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PREFACE

This monograph stems from lectures which I gave during
the years 1973-1975 at the University of Cincinnati and the
University of Rhode Island. The aim of these lectures was
to present a unified treatment of the approximation theory
of generalized inverses of bounded linear operators in Hil-
bert space. General representation theorems which unify
many diverse computational procedures appear here for the
first time in book form and a new unified treatment of error
bounds is presented. 1In addition much of the recent litera-
ture on approximation methods for generalized inverses of
lTinear operators is surveyed.

Recently several books on the theory and application of
matrix generalized inverses have appeared. Particular men-
tion should be made of the excellent volume by Ben-Israel
and Greville which contains a chapter on generalized inverses
of linear operators in Hilbert space and the recently pub-
lished book edited by Nashed. However, at the present time,
I believe this to be the only self-contained treatment of the
computational theory of generalized inverses of bounded linear
operators in Hilbert space which is suitable for use as a text
in a first or second year graduate seminar. It is also hoped
that this text will be useful as supplemental reading in

courses on linear operator theory and advanced numerical
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analysis. With these uses in mind, a 1ist of exercises is
provided at the end of each chapter.

The chapters are divided into sections, and equations to
which we will have occasion to refer are numbered conse-
cutively in each section. Every proposition has a unique
identifying number; the number "a.b.c." refers to proposition
number "c" in section "b" of chapter "a". The symbol "#" is
used to indicate the end of a proof.

Many friends, colleagues and students have read and
commented on various parts of the manuscript. Thanks are
particularly due to Betsy Conway, Mohab E1-Samaloty, Bart
Jacobs, Alan Lazer, John Montgomery, Lew Pakula and Ghasi
Verma. I owe a special debt of gratitude to Professor Marvin
Marcus for many valuable suggestions on content and style.
Finally, I wish to express my appreciation to Linda Patterson
for an efficient job of typing. The usual statement con-
cerning the ultimate responsibility for residual errors applies

here.

C. W. Groetsch
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CHAPTER T

HILBERT SPACE AND HILBERT

SPACE OPERATORS

Hilbert space, since it is the most natural infinite
dimensional structure into which our geometric intuition
generally carries over, has long been considered as the
appropriate vehicle for the study of many linear problems.
Although we assume that the reader has some familiarity with
Hilbert space and the theory of linear operators, we have in-
cluded this preliminary chapter in an effort to establish co-
herent notation and make the presentation reasonably self-
contained. It is hoped that this chapter will serve as a
brief introduction to basic Hilbert space theory. The results
in this chapter are for the most part stated without proof.
Proofs of many of the theorems are outlined in the exercises
and references are given to standard books on functional
analysis and operator theory where more leisurely accounts of

the basic theory can be found.

SECTION 1
HILBERT SPACE

We assume that the reader is familiar with the concept of

a linear space. By a normed linear space we will mean a linear
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space E endowed with a real-valued function ||-|| which

satisfies the following axioms
[Ix]] > 05 [|x[| =0 if and only if x = o0,
[oax || = Jof |]x]],

Hix +y L < TIx[]+ Tyl

where x and y are arbitrary elements of E and a is any (real

or complex, depending on the context) scalar.

Definition. An inner product space (also called a pre-Hilbert

space) is a linear space E endowed with a scalar valued function
(+5+), called an inner product for E, which satisfies for any

X,¥szZ ¢ E and any scalars o and B

(x5y) = (y,x)
(ax + By,z) = a(x,z) + g(y,z)
(x5x) > 0, with equality only if x = 0.

The bar denotes complex conjugation (of course, if the scalar
field is taken to be the real numbers then the first axiom
becomes (x,y) = (y,x)). By using Theorem 1.1.1, it is easy to
show that any inner product space is also a normed linear space

where the norm is defined by

Hx]] = (x,x)17/2.
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The next theorem gives an inequality which is very basic in
the study of inner product spaces; its proof is outlined in

the exercises.

Theorem 1.1.1. (Schwarz's inequality) For any x and y in

an inner product space E

LOGY) T < TIxT ] Tyl

with equality holding if and only if x and y are linearly de-
pendent (i.e., there exist scalars o and B, not both equal to

zero, such that ax + gy = 0).

Given points x and y in a normed linear space E the distance
between x and y is defined as d(x,y) = [|x = y||. 1t is easy
to see that d defines a metric on E which in turn generates a
topology for E (the norm topology). Schwarz's inequality shows
that in an inner product space the function (+>+) is continuous
in the product topology on £ x E induced by the norm topology

on E.

The proof of the following theorem is routine.

Theorem 1.1.2. If E is an inner product space then

(@) Ilx+ yl[1%+ 11x - y112 = 2(]1x[12 + |1y]12)
(by)  (xsy) = ([Ix + y[I% - ||x - y||2)/4 (real scalars)
(by)  Coy) = (Ix + y[[2 - []x - y[|2 +

il]x + 1YI|2 - il]x - 1'}’||2)/4 (complex scalars)
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Identity (a) above is called the parallelogram law owing
to its obvious geometrical interpretation. The identities
(b) are usually referred to in the literature as the polari-

zation identities.

Definition. A sequence {xn} in a normed linear space is called

a Cauchy sequence if given ¢ > 0 there is a positive integer

N(e) such that n,m > N(e) implies ||xn - xm|| < B

Definition. A normed linear space E is said to be complete
(also called a Banach space) if every Cauchy sequence in E

converges to some point of E.

Definition. A complete inner product space is called a

Hilbert space.

The most important examples of Hilbert spaces are the real
Hilbert spaces

22 - {{x;} : x5 ¢ R and J X5 4 w}
! i=1 "

where the inner product of two vectors x = {Xi} and y = {yi}

is defined by

oo

(x,y) = 1.21"1'3'1"
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and the Hilbert space Lz[a,b] consisting of all (equivalence
classes of) square integrable functions on [a,b] with the

inner product
b
(f,g) = f f(t)g(t) dt.
a

0f course, with minor modifications in the above descriptions
we could define complex versions of the spaces 12 and Lz[a,b].
It goes without saying that the finite dimensional spaces RN

and €" are Hilbert spaces under the usual inner products.

Definition. A scalar valued linear function defined on a linear

space E is called a linear functional on E (i.e., f : E > F,

where F is the scalar field, is a linear functional if

f(ax + By) = af(x) + gf(y), for a,g8 ¢ F and x,y e E).

If addition and scalar multiplication are defined on the

set of linear functions by

(6 + v)(x) = ¢(x) + y(x)

(ag)(x)

ag (x)

we see that this set forms a linear space. The linear space of
all (norm) continuous linear functionals on a normed linear
space E is denoted by E* and is called the dual space of E.
The space E* is a normed linear space where the norm is defined

*
for ¢ ¢ E by
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[16]]= sup{|é(x)]| : x ¢ E, [Ix]] = 13.

*
If the space E is complete then so is E . The next theorem
shows that Hilbert space enjoys the property of being self-

dual (for a proof see the exercises).
Theorem 1.1.3. (Riesz Representation Theorem) If ¢ is a con-

tinuous linear functional on a Hilbert space H, then there

exists a unique y ¢ H such that
o(x) = (x,y)
for each x e H.
Definition. A subset S of a linear space E is called a subspace

of E if S is itself a linear space. If E is a normed linear

space then a subspace S of E is called a closed subspace if S

is closed in the norm topology for E.

We note that a closed subspace of a complete linear space
is itself complete. We now introduce the concept of convexity,

which plays a fundamental role in Tinear space theory.

Definition. A subset C of a normed linear space is called

convex if tx + (1 - t)y e C for all X,y ¢ C and all t ¢ [0,1].
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The next theorem is a basic principal in the theory of

optimization and best approximation.

Theorem 1.7.4. A closed convex subset C of a Hilbert space

contains a unique vector of smallest norm.

Proof. Let M = inf{||x|| : x ¢ C} and choose a sequence
{x,} &€ C such that 1im|lxn[[ = M. Since C is convex, we have
n

by use of the parallelogram law

2

[xp - x 201 1x 112+ 1Ixgl12) - 4 [(x, + x.)/2] ]

ml

201 Ixp 1%+ [1x,112) - am?

tA

which converges to 0 as n,m » ». Hence {xn} is a Cauchy se-
quence which therefore has a limit x e C (since C is closed).
It is now easy to see that x is the unique vector in C of min-
imal norm. Indeed, if y is a vector in C with norm M which is
distinct from x, then

0 < [Ix - ylI1? = am - a|[(x + y)/2||2.

Therefore,

[1(x + y)/2|] <M

which is a contradiction. #
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The following is an easy consequence of (1.1.4).

Corollary 1.1.5. If C is a closed convex subset of a Hilbert

space H, then for each u ¢ H there is a unique x € C such that

[lu - x|| = inf{||u - y||] : y € C}.

Inner product spaces have a richer geometrical structure
than general linear spaces owing to the fact that in spaces
with an inner product the concept of perpendicularity can be

developed.

Definition. Two vectors x and y in an inner product space are
said to be orthogonal, denoted x L y, if (x,y) = 0. If S is a
subspace of an inner product space E we define its orthogonal

complement by

4
S ={y eE : x4y for all x ¢ S}.

Note that if x and y are orthogonal then they satisfy the
Pythagorean property

2 2
Ix + y11% = |Ix[12 + ||y]]2.

The name is suggestive of the geometrical significance of this
identity. It is worthwhile to point out that since the inner

product is continuous it follows that for any subspace S the
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4
set S is a closed subspace. It is of fundamental importance
that in a Hilbert space a closed subspace and its orthogonal

complement decompose the space in the following sense.

Theorem 1.1.6. If S is a closed subspace of a Hilbert space H,
4
then H can be written as the direct sum of S and S , denoted
4 ;
H =S ® S, meaning that each x € H can be written uniquely as

i
X = Xq + X5 where Xy e S and Xy € S

Proof. Given x ¢ H there exists by (1.1.5) a unique vector

Xy € S such that ||x - x1|| is minimal. Let Xp = x = xq. For
any y € S with ||y||] = 1 we have
2 2 2
LIxp 1% = Thx = xq 1% < lx = xq = (xp59)y] |

2 2 2
LIxg 115 = Txpuy) |7 < %, ] ]°.

1
Therefore, (Xz’y) = 0, and it follows that X, € S . Hence we
4
see that x = Xp t x, € S@®S . Uniqueness of the representation

is easy to establish. #

SECTION 2
LINEAR OPERATORS

This section sets forth some of the salient features of the
theory of linear operators. The results given here will form
a foundation for our general development of generalized

inverses of bounded linear operators.



