Parallel

Computer
Architecture

A Hardware/Software Approach
JE 47 hL S Al
 EREGH

(R - B2
David E. Culler
(%) Jaswinder Pal Singh %
Anoop Gupta

meb'&l_lk&}‘{a'%i M V‘

T AU A F5

#ﬁﬁémm%%ﬂ

(ZEXHR % 2MR)

Parallel Computer Architecture
A Hardware/Software Approach

i MRIES
David E Cullerﬁ jl:g 5%

(£) Jaswinder Pal Sing

(Second

Anoop Gupta

David E. Culler & Jaswinder Pal Singh with Anoop Gupta: Parallel Computer
Architecture, A Hardware/Software Approach. Second Edition.

Copyright @ 1996 by Morgan Kaufmann Publishers, Inc.

Harcourt Asia Pte Ltd under special arrangement with Morgan Kaufmann authorizes
China Machine Press to print and exclusively distribute this edition, which is the only
authorized complete and unabridged reproduction of the latest American Edition published
and priced for sale in China only, not including Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this

Law is subjected to Civil and Criminal penalties.

HarcourtiF #} 2% 1#£ 5Morgan Kaufmann2) 5] f48% A R T, BAHLAR Tk H AR+
HEHMR R TEEA, EBALEEEFRRSMGNERIRFHEE G, FAEPE
BN (FASE BB EREINTHRE) #HEmENHHR.

AR AR B BRI QA7 R ER R, EkETAR -DREMANERE.

MR A, RILT.

ZHBREMEIZS: B 01-1999-2021
BHERSEB (CIP) ¥iE

HAFHEN RS P2 EX/(E)BHi(Culler, D. E)%3, —Jb3: ST
HAg#H:, 1999.9 a

GHEILEHENS)

ISBN 7-111-07440-8

1.3 0.8 OITHEN - £GeH — %L V.TP338.6
rh E AR A B 51 CIPS IR % 5 (1999) 8 337905 .

W OAR #: DIUEE estlifaRx | 5 EA#225 WB4wES 100037)
tEHE= BRI BRI - FEBEEREAET
19994E9 H % 1 kR 5 LR ENRI

787mm x 1092mm1/16 - 65.75E[3k

El1%;: 0 001- 2 000/}

EHr: 88.007T

LA, mAGRT. BT, B, Bz THHiER

To Sara, Silvia, and our families

In memory of Susanne Kreith Culler

About the Authors

David E. Culler, Professor of Computer
Science at University of California, Berkeley.
Dr. Culler works in the areas of computer ar-
chitecture, communication, programming
languages, operating systems, and perfor-
mance analysis. He led the Berkeley Network
of Workstations (NOW) project, which
sparked the current commercial revolution
in high-performance clusters. He is interna-
tionally known for his work on Active
Messages for fast communication, the LogP
parallel performance model, the Split-C par-
allel language, the TAM threaded abstract
machine, and for his work on dataflow archi-
tectures. He received the Presidential Faculty
Fellowship Award and the Presidential
Young Investigator Award from the National
Science Foundation. He received the PhD
from MIT in 1989. Currently he is vice-chair
of computing and networking for the
Deptartment of Electrical Engineering and
Computer Sciences at UC Berkeley and leads
the Millennium Project, investigating campus-
wide clusters.

Jaswinder Pal Singh, Assistant Professor in
the Computer Science Department at Princeton
University. Dr. Singh works at the boundary
of parallel applications and multiprocessor
systems, including architecture, software,
and performance evaluation. He has led the
_ development and distribution of the SPLASH
and SPLASH-2 suites of parallel programs,
which are very widely used in parallel sys-
tems research. While at Stanford, where he
obtained his MS and PhD degrees, he partici-
pated in the DASH and FLASH multiproces-

sor projects, leading the applications efforts
there. The technology developed in the
DASH project is becoming widely available
in commercial products. At Princeton, he
heads PRISM, an application-driven re-
search group that investigates supporting
programming models on a variety of com-
munication architectures and applies parallel
computing to a variety of application do-
mains. He is a recipient of the Presidential
Early Career Award for Scientists and Engi-
neers (PECASE) and a Sloan Research Fel-
lowship.

Anoop Gupta, Associate Professor of Com-
puter Science and Electrical Engineering at
Stanford University and Senior Researcher at
Microsoft. Dr. Gupta has worked in the areas
of computer architecture, operating systems,
programming languages, performance de-
bugging tools, and parallel applications.
With John Hennessy, he co-led the design
and construction of the Stanford DASH ma-
chine, one of the first scalable distributed
shared memory multiprocessors, and has
worked on the follow-up FLASH project.
The technology developed in the DASH
project is now becoming widely available in
commercial products. Professor Gupta has
published close to 100 papers in major con-
ferences and journals, including several
award papers. Professor Gupta received the
NSF Presidential Young Investigator Award
and held the Robert Noyce faculty scholar
chair at Stanford. He obtained the PhD from
Carnegie Mellon University in 1986.

Foreword

John L. Hennessy
Frederick Emmons Terman Dean of Engineering, Stanford University

1 am delighted to be able to write the foreword for this exciting and timely new book
on parallel computing. The insightful approach taken by the authors combined with
a systematic and quantitative examination of different architectures distinguishes
this book from all previous books on parallel architecture. The approach, which is
developed in the first four chapters, has three major innovations: it builds on the
recent convergence of parallel architectures, it uses applications as a driver for evalu-
ating and analyzing architectures, and it is grounded in a solid methodology for per-
formance evaluation. - -

The recent convergence among the shared memory and message-passing para- .
digms, which is described in Chapter 1, provides new opportunities for characteriz-
ing and analyzing architectures in a common framework. Relying on this
convergence, the authors describe four fundamental design issues (communication
abstraction, programming model, communication and replication, and perfor-
mance) that create a framework for talking about a wide variety of architectures and
implementations. Within this framework, different architectural approaches are
compared and examined critically.

One cannot understand the design trade-offs or performance of multiprocessors
without understanding the interaction of applications and architecture. Accordingly,
Chapters 2 and 3 describe a set of parallel programs as well as how the applications
are parallelized and organized for performance. These chapters illuminate both the
parallel programming process and its challenges in addition to laying a foundation
for quantitative evaluation of architectural approaches and implementations. These
chapters are key to understanding the performance of multiprocessors, and Chapter
4 illustrates this by showing how to evaluate an architecture using a parallel work-
load. The authors also describe the complexities of evaluating parallel machines,
including issues arising from the scaling of machine sizes and workloads. Together
these three chapters form the foundation on which the remaining chapters build.

Small-to-medium-sized shared memory multiprocessors are the dominant form
of parallel architecture seen today, and understanding the principles and design
trade-offs of these machines is critical to anyone interested in parallel computing.

vl Foreword

Chapter 5 describes the key concepts underlying shared memory multiprocessing:
cache coherency, memory consistency, and synchronization. The authors then de-
scribe the detailed design of snoop-based shared memory multiprocessors, including
two detailed case studies, in Chapter 6.

Designing multiprocessors that scale to larger numbers of processing nodes
remains one of the most challenging and controversial aspects of multiprocessor
architecture. Chapter 7 devotes itself to such machines, spanning the design space
from message passing to shared memory. Chapter 8 extends this discussion by
examining the use of directory schemes, which allow cache coherency to scale to
larger numbers of processing nodes. The basics of directory-based coherence are dis-
cussed, and two detailed case studies form the core of the chapter. These casé studies
are the first detailed and quantitative examinations of commercial implementations
of directory-based cache coherence.

Some of the most important hardware and software technologies used in multi-
processors are largely independent of the details of the architectural approach.
Hence, the authors explore these key technologies in a set of three chapters. Chapter
9 describes the software implications, hardware requirements, and performance
trade-offs that arise in memory systems, including both consistency issues and the
extended use of caching. Chapter 10 examines interconnection technology, a key
constituent of any multiprocessor. Finally, Chapter 11 examines techniques for
tolerating latency, in many ways the key “universal” design problem for parallel
computers.

,fThe book concludes with an insightful discussion of future hardware and soft-
ware challenges. First, the authors discuss likely evolutionary scenarios in the hard-
ware and software domain. Then they turn to the potential hurdles in a pair of
sections entitled “Hitting a wall.” Finally, they examine potential breakthroughs! 1
found the final chapter both stimulating and thought provoking. The different back-
grounds and complementary strengths of the authors help make this chapter both
perspicacious and provocative.

In summary, this is an exciting and dynamic new exploration of the multiproces-
sor design space. The convergence in architectural approaches combined with the
authors’ framework has made it possible to establish a common ground on which to
examine the diversity of modern parallel architectures. A few years ago, it would
have been impossible to write this book because the architectural approaches were
too divergent. Similarly, without the attention to quantitative measures of perfor-
mance and the interaction between applications and architectures, this book would
be much less distinctive. Instead, the authors have taken advantage of the conver-
gence and the focus on an applications-driven and performance-based analysis to
produce a unique and insightful exploration of parallel architectures. This approach,
combined with the unique strengths and experiences of the authors, yields a treatise
that is far more perceptive than any other book in parallel architecture. I congratu-
late the authors and commend this book to all readers interested in both the practice
and concepts of parallel processing and the future of these technologies.

Preface

Parallel computing has become a critical component of the computing technology of
the 1990s, and it is likely to have as much impact over the next 20 years as micro-
processors have had over the past 20. Indeed, the two technologies are deeply
linked, as the evolution of highly integrated microprocessors and memory chips
makes multiprocessor systems increasingly attractive. Multiprocessors already repre-
sent the high-performance end of almost every segment of the computing market,
from the fastest supercomputers and largest data centers to departmental servers to
the individual desktop. Tightly integrated clusters of PCs, workstations, or even
multiprocessors are emerging as scalable Internet servers. In the past, computer ven-
dors employed a range of technologies and processor architectures to provide
increasing performance across their product line. Today, the same state-of-the-art
microprocessor is used throughout. To obtain a significant range of performance, the
primary approach is to increase the number of processors, and the economies of .
scale make this extremely attractive. Very soon, several processors will fit on a single
chip and multiprocessors will be even more widespread than they are today.

Although parallel computing has a long and rich academic history, the close cou-
pling with commodity technology has fundamentally changed the discipline. The
emphasis on radical architectures and exotic technology has given way to quantita-
tive analysis, the realization of different programming models on the same underly-
ing processing nodes, and careful engineering trade-offs. Our goal in writing this
book is to equip designers of the emerging class of multiprocessor systems—from
modestly parallel desktop computers to highly parallel information servers and
supercomputers—with an understanding of the fundamental architectural and soft-
ware issues and the available techniques for, addressing design trade-offs. At the
same time, we hope to provide designers of software systems and applications with
an understanding of the likely directions of architectural evolution, the forces that
will determine the specific path that hardware designs will follow, and the impact of
these developments on performance-oriented programming.

The most exciting recent development in parallel computer architecture is the
conyergence of traditionally disparate approaches—namely, shared memory,
message-passing, data parallel, and data-driven computing—on a common machine
structure. This convergence is driven partly by common technological and economic
forces and partly by a better understanding of parallel software. It allows us to
develop a common framework in which to understand and evaluate architectural
trade-offs rather than to focus on exotic designs and taxonomies. Moreover, popular

xvill Preface

parallel programming models are available on a wide range of machines, making
parallel programming more portable and allowing meaningful benchmarks and eval-
uation methodologies to flourish. This maturing of the field makes it possible to
undertake a quantitative as well as qualitative study of hardware/software interac-
tions. In fact, it demands such an approach. The book follows a set of issues that are
critical to all parallel architectures—data access, communication performance, coor-
dination of cooperative work, and correct implementation of useful semantics—
across the full range of modern designs. It describes the set of techniques available
in hardware and in software to address each issue and explores how the various
techniques interact. Carefully chosen, in-depth case studies provide a concrete illus-
tration of the general principles and demonstrate specific interactions between
mechanisms.

One of the motivations for writing this book is the lack of an adequate textbook
for our own courses at Berkeley, Princeton, and Stanford. Several existing texts cover
the material in a cursory fashion, summarizing various architectures and research
results but not analyzing them in depth or providing a modern engineering frame-
work. Others focus on specific projects but do not carry the principles over to alter-
native approaches. The research reports in the area provide a sizable body of ideas
and empirical data, but it is not distilled into a coherent picture. By focusing on the
salient issues in the context of technological and architectural convergence rather
than on the rich and varied history that has brought us to this point, we hope to pro-
vide a deeper and more coherent understanding of this exciting and rapidly chang-
ing field. This was a deeply collaborative effort, reflected in the alternation of the
order of our names on the book covers.

Intended Audience

The subject matter of this book is core material that is important for researchers, stu-
dents, and practicing engineers in the fields of computer architecture, systems soft-
ware, and applications. The relevance for computer architects is obvious, given the
growing importance of multiprocessors. Chip designers must understand what con-
stitutes a viable building block for multiprocessor systems. Bus and memory system
design are dominated by issues related to parallelism. 1/O system design must
address fast scalable networks, clustering, and devices that are shared by multiple
processors.

Systems software—including operating systems, compilers, programming lan-
‘guages, run-time systems, and performance debugging tools—needs to address new
issues and will provide new opportunities in parallel computers. Thus, an under-
standing of architectural evolution and the forces guiding-that evolution is critical.
Research and development in compilers and programming languages have addressed
aspects of parallel computing for some time. However, the new convergence with
commodity technology suggests that these aspects may need to be reexamined and
addressed in a more general context. The traditional boundaries between hardware,
operating system, and user program are also shifting in the context of parallel

Preface xix

computing, where programs often want more direct control over resources for better
performance.

Applications areas, such as computer graphics and multimedia, scientific com-
puting, computer-aided design, databases, decision support, and transaction pro-
cessing, are all likely to see a tremendous transformation as a result of the vast
computing power available at low cost through parallel computing. However, devel-
oping parallel applications that are robust and that provide good parallel speedup
across current and future multiprocessors is a challenging task and requires a deep
understanding of system interactions and architectural directions. The book seeks to
provide this understanding but also to stimulate the exchange between the applica-
tions fields and computer architecture so that better architectures can be designed—
those that make the programming task easier and performance both higher and
more robust.

Organization of the Book

The book is organized into 12 chapters. Chapter 1 provides an overview of parallel
architecture. It opens with a discussion of why the expanding role of multiproces-
sors is inevitable, given current trends in technology, architecture, and applications.
It briefly introduces the diverse multiprocessor architectures that have shaped the
field (shared memory, message passing, data parallel, dataflow, and systolic) and
shows how the technology and architectural trends are driving a convergence in the
field to a set of commodity processing nodes connected by a communication archi-
tecture. This convergence does not mean the end to innovation but, on the contrary,
that we will now see a time of rapid progress, as designers start talking with each
other rather than past each other. The chapter develops a layered framework
(including the programming model, communication abstraction, user/system inter-
face, and hardware/software interface) for understanding wide variety of communi-
cation architectures and implementations. Viewing the convergence of the field in
this framework, the last portion of the chapter lays out the fundamental design
issues that must be addressed at each of the interfaces between layers: naming,
ordering, replication, and communication performance (overhead, latency, and
bandwidth). These issues form an underlying theme throughout the rest of this
book. The chapter ends with a set of historical references.

Chapter 2 provides an introduction to the process of parallel programming. It
describes a set of motivating applications for multiprocessors that are used through-
out thé rest of the book. It shows what parallel programs look like in the major pro-
gramming models and hence what primitives a system must support. It uses the
application case studies to illustrate the steps of decomposition, assignment, orches-
tration, and mapping in creating a parallel program and identifies the key perfor-
mance goals of these steps.

Chapter 3 describes the basic techniques that good parallel programmers use to
get performance out of the underlying architecture. It provides an understanding of
hardware/software trade-offs and illustrates what aspects of performance can be
addressed through architectural means and what aspects must be addressed either

xx Preface

by the compiler or the programmer. The analogy in sequential computing is that
architecture cannot transform an O(n?) algorithm into an O(n log n) algorithm, but
it can improve the average access time for common memory reference patterns. The
chapter shows clearly the core algorithmic and programming challenges that cut
across programming models as well as the model-specific orchestration issues. This
material shows how architectural advance can ease the burden of effective parallel
programming in addition to increasing the achievable performance. The program-
ming techniques are a key factor in any quantitative evaluation of design trade-offs,
and the chapter concludes by applying them to the motivating applications to pro-
duce high-performance versions.

Chapter 4 takes up the challenge of performing solid workload-driven evaluation
of design trade-offs. Architectural evaluation is difficult even for modern uniproces-
sors, where we typically look at moderate design variations—such as pipeline or
memory system organizations—against a fixed set of programs. In parallel architec-
ture, we have many more degrees of freedom to explore. The interactions between
aspects of the design are more profound, and the interactions between hardware and
software are more significant as well as of wider scope. We are often interested in
performance as the machine and the program scale, and it is impossible to scale one
without affecting the other. It is easy to arrive at incomplete or even misleading con-
clusions if the evaluation is not methodologically sound, so the characteristics of
parallel programs must be adequately understood. Chapter 4 discusses how applica-
tion and architectural parameters interact and how they should be scaled together
and presents benchmarks that are used throughout later chapters. It provides meth-
odological guidelines for the evaluation of real machines and of architectural ideas
through simulation. The Appendix provides additional reference material on parallel
benchmarking efforts.

Chapters 5 and 6 provide a complete understanding of the bus-based, symmetric
shared memory multiprocessors (SMPs) that form the bread and butter of modern
commercial machines beyond the desktop. Chapter 5 presents the high-level, logical
design of “snooping” bus protocols, which ensure that automatically replicated data
is coherent across multiple caches. This chapter provides an important discussion of
memory consistency, which brings us to terms with what shared memory really
means to algorithm designers. It discusses the spectrum of design options and how
machines are optimized against typical reference patterns occurring in user pro-
grams and in the operating system. Given this conceptual understanding of SMPs,
the chapter reflects on the implications for parallel software, including applications
and support for synchronization.

Chapter 6 examines the protocol issues in more depth as well as physical design
of bus-based multiprocessors. It digs into the engineering issues that arise in sup-
porting modern microprocessors with multilevel caches on modern buses, which are
highly pipelined, as well as how the high-level protocols of the previous chapter are
realized and extended on these systems. The presentation here provides a very com-
plete understanding of the design issues in this regime. It is all the more important
because these small-scale designs form a building block for large-scale designs and
because many of the concepts appear later in the book on a larger scale with a

Preface xXi

broader set of concerns. The chapter also provides self-contained case studies on the
SGI Challenge and Sun Enterprise servers.

Chapters 7, 8, 9, and 10 provide a complete understanding of the scalable multi-
processor architectures that represent the high end of computing and the future of
the midrange as technology continues to advance.

Chapter 7 presents the hardware organization and architecture of a range of
machines that are scalable to large or very large configurations. The key organiza-
tional concept is that of a network transaction, analogous to the bus transaction that
is the fundamental primitive for the smaller designs in Chapters 5 and 6. However,
in scalable machines the global arbitration and globally visible information is lost
and a large number of transactions can be outstanding. The chapter shows how pro-
gramming models are realized in terms of network transactions and studies a spec-
trum of important design points organized according to the level of direct hardware
interpretation of the network transaction, including case studies of the nCUBE/2,
Thinking Machines CM-5, Intel Paragon, Meiko CS-2, CRAY T3D, and CRAY T3E. It
examines modern clusters in this framework with case studies of the Myrinet NOW
and the DEC Memory Channel. A performance comparison is conducted across
these designs.

Chapter 8 puts the results of the previous chapters together to demonstrate how
to realize a shared physical address space with automatic hardware replication and
cache coherence on scalable systems. This style of machine is increasingly popular
in the industry. The chapter provides a complete treatment of directory-based cache
coherence protocols and hardware design alternatives, including case studies of the
SGI Origin2000 and Sequent NUMA-Q. It examines workload behavior on these
machines and extends the discussions of programming implications and synchroni-
zation.

Chapter 9 examines a spectrum of alternatives for shared address space systems
that push the boundaries of hardware/software trade-offs to obtain higher perfor-
mance, reduce hardware cost and complexity, or both. It covers relaxéd memory
consistency models, cache-only memory architectures that replicate data coherently
in hardware in main memory, and software-based coherent replication. Much of this
material is in the transitional phase from academic research to commercial product
at the time of this writing, and its role will be further shaped as cluster technology
emerges. It exposes very important design concepts not treated elsewhere in the
book.

Chapter 10 addresses the design of scalable high-performance communication
networks, which underlies all the scalable machines discussed in previous chapters
but was deferred to complete our understanding of the processor, memory system,
and network interface design that drive these networks. The chapter builds a general
framework for understanding where hardware costs, transfer delays, and bandwidth
restrietions arise in networks. It looks at a variety of trade-offs in routing techniques,
switch design, and interconnection topology with respect to these cost-performance
metrics. The trade-offs are made concrete through case studies of recent designs.

Given the foundation established by the first 10 chapters, Chapter 11 examines a
set of crosscutting issues involved in tolerating the significant latencies that arise in

xxii

Preface

multiprocessor systems without impeding performance. The techniques exploit two
basic capabilities: overlapping latency with useful work and pipelining the transfer
of data. The simplest of these techniques are essentially bulk transfers, which pipe-
line the movement of a large regular sequence of data items and often can be off-
loaded from the processor. The other techniques attempt to hide the latency
incurred in collections of individual loads and stores. Write latencies are hidden by
exploiting weak consistency models, which recognize that ordering is conveyed by
only a small set of the accesses to shared memory in a program. Read latencies are
hidden by implicit or explicit prefetching of data or by lookahead techniques in
modern dynamically scheduled processors. Some of the techniques extend to hiding
synchronization latencies as well. The chapter provides a thorough examination of
these alternatives, the impact on compilation techniques, and a quantitative evalua-
tion of effectiveness.

Finally, Chapter 12 examines the trends in technology, architecture, software sys-
tems, and applications that are likely to shape the future evolution of the field. It
looks at evolutionary scenarios, walls we may hit, and potential breakthroughs from
a hardware/software perspective.

Using the Book

The book is organized to meet the needs of several potential audiences. It can serve
as a graduate text, a professional reference for engineers, and as a general reference
for members of the technical community who find themselves dealing ever more fre-
quently with parallel computing. There is sufficient material, if covered in full
depth, for a full-year study of parallel computing, covering the entire range of
machine design and practical parallel programming experience. However, it can also
be used.in smaller segments.

Chapter 1 is intended to provide a stand alone, general understanding of parallel
architectures as would be appropriate for a segment of a general computer architec-
ture course at the graduate or upper-division undergraduate level. It would also be
appropriate for the engineering manager or corporate executive needing to under-
stand the vocabulary and basic concepts of parallel computing and how the technol-
ogy will impact their business. It lays out clearly where to go to learn more as your
interest or need to understand parallel computing increases. The chapter can also be
used as a basic background in parallel architecture for compiler, database, operating
system, or programming courses. Chapters 1 and 12 together provide a well-
rounded “outer skin” of parallel computer architecture.

A parallel architecture course oriented toward machine organization and design is
comprised of the core material of Chapters 5, 6, 7, 8, and 10, in addition to the over-
view of Chapter 1. However, the chapters go into greater depth of design than has
been common in traditional courses because the material was not available in any
published form or put together in a design-oriented framework, and they provide
detailed quantitative illustrations of trade-offs. Chapters 5 and 6 develop the key
requirements of correctness in cache-coherent systems and show how to satisfy
them with high performance in increasingly complex designs. Chapter 7 takes apart

Preface xxill

scalable machines in a manner not available from commercial sources or research
publications and addresses emerging high-performance clusters in this framework.
Chapter 8 describes the cache coherence protocols of prominent commercial
distributed-memory machines in a framework and level of detail not available else-
where. Chapter 10 provides a compact, rounded treatment of network design. The
treatment is deep enough in these chapters to provide even the seasoned system
designer with a new understanding and a clean design framework. A serious yet
pragmatic treatment of memory consistency models is carried throughout these
chapters (as well as in the first part of Chapter 9), as is a discussion of implementing
synchronization operations. These chapters on machine organization and design can
be supplemented with Chapter 11, which covers the increasingly important topic of
latency tolerance.

The exciting opportunity presented by this text is that, with the core material
packaged in a cohesive form, it becomes possible to strengthen the basic parallel
architecture course along several dimensions. First, thorough coverage of Chapters 2
and 3 allows the treatment to reach across the hardware/software boundary. This
gives the architecture student a much more solid grasp of the impact of architectural
decisions and what parallel programming is all about. It also broadens the appeal of
the course to a wider audience of operating systems, languages, and applications
students who are viewing the architectural issues from a software perspective. A sec-
ond dimension along which the basic course can be strengthened is quantitative per-
formance analysis of hardware and software design decisions. Building upon a basic
understanding from Chapters 2 and 3, Chapter 4, the Appendix, and the “Implica-
tions for Parallel Software” sections of the later chapters carry this thread through-
out the core machine design material. They provide an informed, critical perspective
with which to view published results, as well as methodological guidelines for per-
forming evaluations. A third dimension is a sharp focus on hardware/software trade-
offs. This is the underlying issue that is framed by the quantitative analysis and
explored in the synchronization and programming sections of each chapter. It comes
to the fore in Chapter 9, where the division of responsibilities in providing a coher-
ent shared address space is examined in detail, and in Chapter 11 in the discussion
of latency tolerance. Each of these dimensions represents a group of professionals
who have an increasing need to understand more deeply how to deal with parallel
architectures.

The book also serves well as the primary text for a hands-on parallel program-
ming course. With Chapter 1 providing a general introduction, Chapters 2 and 3
offer a strong framework for how to reason about the behavior of parallel programs.
This is further solidified by the workload analysis in Chapter 4 and the “Implica-
tions for Parallel Software” sections in Chapters 5, 7, 8, and 9. This material should
be supplemented with a reference on the parallel programming environment used in
.the course, such as MPI, parallel threads, or HPE The case studies in Chapters 6, 7,
and 8 provide thorough coverage of machines similar to what students are likely to
use. Chapter 11 provides a convenient framework for an examination of how best to
solve the challenges of communication in parallel programming.

xxiv

Preface

We believe parallel computer architecture is an exciting core field of study and
practice whose importance will continue to grow. It has reached a point of maturity
at which a serious textbook based on design and engineering principles makes
sense. From a rich diversity of ideas and approaches, a dramatic convergence is now
occurring in the field. It is time to go beyond surveying the machine landscape to an
understanding of the fundamental design principles. We have intimately partici-
pated in the convergence of the field; this text arises from our experience, and we
hope it conveys some of the excitement that we feel for this dynamic and growing
area. Since parallel architecture does change so rapidly, case studies, performance
analyses, and workloads need to be refreshed periodically. The Web page for this
book will provide a repository for such timely material, as well as for additional
teaching materials, and we hope that you will help contribute to that repository
through the high-quality products of your courses and commercial developments.
The URL for the book is www.mkp.com/pca.

We also encourage readers to report any errors or bugs so that we may correct
them in subsequent printings. Please email them to pcabugs@mkp.com. Please also
check the errata page at www.mkp.com/pca to see if the bug has already been reported
and fixed.

Acknowledgments

This book has been in gestation in various forms for quite some time, and it has ben-
efited from the efforts of many individuals. It had its roots in notes and slides for our
parallel processing courses and in our research projects. Our students and staff have
been invaluable throughout. Although this is the first edition, drafts have been avail-
able on the Web as the material was being developed. In the way of the Web, we
have no idea of all the institutions around the world that have used it in courses and
research, but we receive suggestions from the most exotic places. Many people have
made contributions to it directly, indirectly, or even anonymously, so we would like
to thank all of you.

Numerous students have improved this book by their questions, ideas, solutions,
and projects. We want to thank the students in CS 258 (Parallel Processors) and CS
267 (Applications of Parallel Computers) at Berkeley, CS 598 (Parallel Computer
Architecture and Programming) at Princeton, and CS 315A (Parallel Computer
Architecture and Programming) and CS 315B (Parallel Programming Project) at
Stanford. Special thanks go to Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, Brent
Chun, Seth Goldstein, Alan Mainwaring, Rich Martin, Lok Tin Liu, Steve Lummetta,
Chad Yoshikawa, and Frederick Chun Bong Wong at Berkeley; Angelos Bilas, Liviu
Iftode, Dongming Jiang, Steven Kleinstein, Sanjeev Kumar, Hongzhang Shan, and
Yuanyuan Zhou at Princeton; and Cheng Chen, John Heinlein, Moriyoshi Ohara,
Evan Torrie, and Steven Cameron Woo at Stanford, all of whom have contributed
valuable insight, data, and analysis to the book through their tireless efforts. Jiang,
Kumar, Ohara, Torrie, Wong, and Woo deserve an especially hearty thanks for their
contributions.

Preface xxv

Many people in academia and industry provided invaluable assistance in review-
ing drafts, explaining to us how things really worked, trying out the book, and guid-
ing us along the path. We would especially like to thank Sarita Adve, Arvind, Russell
Clapp, Michel Dubois, Mike Galles, Kourosh Gharachorloo, Jim Gray, John
Hennessy, Mark Hill, Phil Krueger, James Laudon, Edward Lazowska, Dan Lenoski,
W. R. Michalson, Todd Mowry, Greg Papadopoulos, Dave Patterson, Randy Rettberg,
Shuichi Sakai, Klaus Schauser, Ashok Singhal, Burton Smith, Jim Smith, Mark
Smotherman, Per Stenstrom, Thorsten von Eicken, Maurice Wilkes, David Wood,
and Chengzhong Xu. Thanks, John and Dave, for guidance throughout. Many peo-
ple assisted us by teaching from portions of the book, including our earliest adopt-
ers, Sarita Adve, Andrew Chien, Jim Demmel, Wallid Najjar, Constantine
Polychronopoulos, Radhika Thekkath, and Kathy Yelick.

We also want to thank the National Science Foundation, the Defense Advanced
Research Projects Agency, the Department of Energy, and numerous corporate spon-
sors for supporting the research that underlies the material in this book and the dra-
matic advance of parallel computing.

We wish to thank the impressive team at Morgan Kaufmann Publishers who man-
aged to get this book all the way to the end. Denise Penrose picked up the reins and
led the team with unbelievable energy, dedication, and enthusiasm. It was an abso-
lute pleasure to work with her. Elisabeth Beller managed the entire production pro-
cess very smoothly. Meghan Keeffe and Jane Elliott coordinated reviews and photo
searches and tied up many a loose end. A crew of talented proofreaders kept all the
right words in all the right places. Thanks also to Jennifer Mann, who managed the
project before Denise joined up, and to Bruce Spatz, who has moved on from MKP
since starting this book on its way.

We must also thank our university staff, Gabriela Aranda, Ginny Hogan, Chris
Kranz, Terry Lessard-Smith, Bob Miller, Thoi Nguyen, Matt Norcross, Charlie
Orgish, Jim Roberts, and Chris Tengi, for countless bits of help along the way.

Above all, our deepest thanks, appreciation, and love go to our families for their
immeasurable support, patience, kindness, and wisdom throughout the entire
process.

Contents

1.1

1.2

1.3

1.4
1.5
1.6

Foreword vi
Preface xviii

Introduction 1

Why Parallel Architecture 4
1.1.1 Application Trends 6
1.1.2 Technology Trends 12
1.1.3 Architectural Trends 14
1.1.4 Supercomputers 21
1.1.5 Summary 23

Convergence of Parallel Architectures 25
1.2.1 Communication Architecture 25
1.2.2 Shared Address Space 28

1.2.3 Message Passing 37

1.2.4 Convergence 42

1.2.5 Data Parallel Processing 44

1.2.6 Other Parallel Architectures 47
1.2.7 A Generic Parallel Architecture 50

Fundamental Design Issues 52

1.3.1 Communication Abstraction 53

1.3.2 Programming Model Requirements 53
1.3.3 Communication and Replication 58
1.3.4 Performance 59

1.3.5 Summary 63

Concluding Remarks 63
Historical References 66

Exercises 70

