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Preface

At the present time, the average undergraduate mathematics major finds
mathematics heavily compartmentalized. After the calculus, he takes a course
in analysis and a course in algebra. Depending upon his interests (or those of

“his department), he takes courses in special topics. If he is exposed to topology,
it is usually straightforward point set topology; if he is exposed to geom-
etry, it is usually classical differential geometry. The exciting revelations that
there is some unity in mathematics, that fields overlap, that techniques of one
field have applications in another, are denied the undergraduate. He must
wait until he is well into graduate work to see interconnections, presumably
because earlier he doesn’t know enough. .

These notes are an attempt to break up this compartmentahzatlon at least
in topology-geometry. What the student has learned in algebra and advanced
calculus are used to. prove some fairly deep results relating geometry, topol-
ogy, and group theory. (De Rham’s theorem, the Gauss-Bonnet theorem for
surfaces, the functorial relation of fundamental group to covering space, and
surfaces of constant curvature as homogeneous spaces are the most note-
worthy examples.)

In the first two chapters the bare essentials of elementary point set topology
are set forth with some hint of the subject’s application to functional analysis.
Chapters 3 and 4 treat. fundamental groups, covering spaces, and simplicial
complexes. For this approach the authors are indebted to E. Spanier. After
some preliminaries in Chapter 5 concerning the theory of manifolds, the De
Rham theorem (Chapter 6) is proven as in H. Whitney’s Geometric Integration
Theory. In the two final chapters on Riemannian geometry, the authors
follow E. Cartan and S. S. Chern. (In order to avoid Lie group theory in the
last two chapters, only oriented 2-dimensional manifolds are treated.) .
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Preface

These notes have been used at M.L.T. for a one-year course in topology and
geometry, with prerequisites of at least one semester of modern algebra and
one semester of advanced calculus *“done right.” The class consisted of about
seventy students, mostly seniors. The ideas for such a course originated in one
of the author’s tour of duty for the Committee on the Undergraduate Pro-
gram in Mathematics of the Mathematical Association of America. A
program along these lines, but more ambitious, can be found in the CUPM
pamphlet “Pregraduate Preparation of Research Mathematicians” (1963).
(See Outline I1I on surface theory, pp. 68-70.) The authors believe, however,
that in lecturing to a large class without a textbook, the material in these notes
was about as much as could be covered in a year.
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Some point set topology

1.1 Naive set theory

We shall accept as primitive (undefined) the concepts of a set (collection,
family) of objects and the concept of an object belonging to a set.

We merely remark that, given a set S and an object x, one can determine if
the object belongs to (is an element of) the set, written x € S, or if it does not
belong to the set, written x ¢ S.

Definition. Let 4 and B be sets. A4 is a subset of B, written A < B, if xe A
implies x € B. A is equal to B, written A = B, if A < Band B < A.

Notation. The empty set, that is, the set with no objects in it, is denoted
by 2.

Remark

(1) o < A for all sets 4.

(2) The empty. set o is unique; that is, any two empty sets are equal. For if
@, and @, are two empty sets, ¥, < g, and g, < &,.

(3) A< A for all sets A4. '

Definition. Let 4 and B bt_e sets. The union A U B of A and B is the set of all x
such that x € 4 or x € B, written

AU B=[x;x€Aor xeB].
The intersection A N B of A and B is defined by

AN B = [x;x€Aand x€ B].
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1: Some point set topology

' . Similarly, if & is a set (collection) of sets, the union and intersection of all
gthe sets in & are defined respectively by

U S = [x; x € S for some S e ),
Se¥ 2

() S = [x; x€ S for every S &].
Se¥

If A = B, the complement of A in B, denoted A’ or B — A, is defined by
A" = [xeB;x¢A]

Theorem 1. Let A, B, C, and S be sets. Then

(1) AUB=BU A.
2 AnNnB=BnNA.
B AUB)UC=A4AU(BUOQO).
@D AnBNC=4An(BNC).
) AvBNC)=[AUBN(AUVQO).
6 ANnBUC)=(ANB)U(4nCO).
(D IfA< Sand B < S then,(AVY B) = A'n B
(8) IfA< Sand B< S, then (AN B) = A’ U B'.
(9) If & and S5 are two sets (collections) of sets, then

(US)U(_US) mecokodo

: Se¥y SeS g SeSF1uFq
and '

(ms)n(ms)= AR

Se, - SeS g SeFvFy

(10) For ¥, and < as in (9),

(U)o (ys)= Y sins

ProOF. The proof of this theorem is left to the student.

Definition. Let 4 and B be sets. The Cartesian product A x Bof Aand Bisthe -
s‘et of ordered pairs

A x B=[(a,b);ac A, be B)].
A relation between A and B is a subset R of 4 x B. a and b are said to be
R-related if (a, b) € R.



1.1: Naive set topology

EXAm Let A = B = the set of feal numbers. Then 4 x B is the plane.
* The order relation x < yis a relation between A and B. This relation is the
shaded set of points in Figure 1.1.

Figure 1.1

Definition. A relation R < A x A is a partial ordering if

(1) (sy, 52) € R and (s,, S3) € R = (5, S3) € R and
(2) (Sl, Sg) €R and (s2, Sl) €ER=> 8 = S3. ;
A relation R is a simple ordering if it is a partial ordering, and, in addition:

(3) either (s;, 53) € R or (s3, 51) € R for every pair s;, s3 € S.

The ordef relation for S = real numbers is an example of a simple ordering.
In general, we say that S is partially ordered (simply ordered) by R.

Definition. Let 4 and B be sets. A fun?tion f mapping 4 to B, denoted
f: A—> B, isarelation (f = 4 x B)between 4 and B satisfying the follow-

ing properties.

(1) If a € A, then there exists b € B such that (a, b) € y
(2) If (a, b) e fand (g, b,) € f, then b = b,.

Property (1) says that the function f is defined everywhere on A. Property
/(2) says that f is a “single-valued” function.

Notation. Let f: A — B. By f(a) = b we mean (a, b) € _flﬂ



1: Some point set topology

Definition. Let f: A — B. f is surjective (onto) if for each b € B there exists
a € A such that f(a) = b. If f is surjective, we write f(4) = B. f is injective
(one-to-one) if f(a) = f(a,) = a = a,. If f is both surjective and m_]ectlve ;
we say f is a one-to-one correspondence between A and B. :

Definition. A set A is countable if there exists a one-to-one correspondence
between the set of all integers and A. A set A is finite if for some positive
integer n there exists a one-to-one correspondence between the set
{1, ..., n} and 4, in which case we say 4 has n elements.

Theorem 2. I[f A = {a,, .. ., a,} is a finite set of n elements, then the set of all
subsets of A has 2" elements.

ProoF. Consider the set F of all functions mapping A4 to the set {YES, NO}
consisting of the two elements YES and NO. F has 2" elements. The set & of
all subsets of A is in one-to-one correspondence with F. For let f: & — F be
defined as follows.

For B € ¥, that is, for B < A f(B) is that element of F (that is,

f(B): A— [YES, NOJ)
given by

YES if x € B,
JBY®) = {NO if x ¢ B.

/ is injective because if f(B) = f(C), then f(B)(x) = f(C)x) for all x € A.
Thus f(B)(x) = YES if and only if f(C)(x) = YES; that is, x € B if and only
if x e C. Thus B = C. fis surjective because every function g: 4 — [YES, NO]
determines a B < A by

_ B = [x; g(x) = YES]
and f(B) = g. ; - O

Notation. Motivated by this proposition, we denote by 24 the set of all
subsets of 4. Given two sets 4 and B, B* denotes the set of all functions
A — B.
Definition. Let f € B“. The inverse f~* of f is the function 22 — 24 defined by

S~} (By) = [ae A4;f(a) € B,] (B, < B).
f~Y(B,) is called the inverse image of B,. Note.that
f— 1e (24)25.

Notation. Let W be a set, and let & be a colléction of sets. We say & is




1.2: Topological spaces

indexed by W if there is given a surjective function ¢: W — &. For we W,
we denote ¢(w) by S,, and denote the indexing of & by W as {S,}vew-

" Definition. Let {Sw}wew be indexed by W. The product of the sets {S,},ew is
the set

HS [ W—»USw,f(w)eS forallweW]

If the set W is not finite, this product is called an infinite product. Note that
this notion of the product of sets extends the notion of the product of two
sets S; x S,. For let W = {1, 2}, let & = {S;, S5}, and let p: W — & by
?(J) &y Sh .] = 19 2. Then Sl X S2 = [(sly Sz), AS Sj]’ and I_Iwew Sw =
[f:{1,2} = S; U S,; f(j) € S;], which can be identified with [(f(1), f(2));
J(j) € S;], which can be identified with S; x S,.

Remark. [T, ew Sy, is a set of functions. One might ask whether there exist
any such functions; that is, is [ J,ew Sy # @ ? In other words, given infinitely
many nonempty sets, is it possible to make a choice of one element from each
set? It can be shown in axiomatic set theory that this question cannot be
answered by appealing to the usual axioms of set theory. We accept the
affirmative answer here as an axiom.

Aﬁom of choice. Let {S,},cw be sets indexed by W. Assume S, # @& for all

we W. Then
1158 # 9.

weW

The axiom of choice is equivalent to several other axioms, one of which is
the following.

Maximum principle. If' S is partially ordered by R, and T is a simply ordered
subset, then there exists a set M such that the following statements are
valid. .

fhel c Mc.S.
(2) M is simply ordered by R.
(3) If M < N < S, and N is simply ordered by. R, then M = N that is,
M is a maximal s1mply ordered subset containing T.
1.2 Topological spaces
Definition. A metric space is a set S together with a funciion p: § x S — the
. nonnegative real numbers, such that for each s,, 55, 53€ S:
(1) p(sis8:).= 0if and only if 5; = s,.
() p(s1, 83) = p(sg, 51).
= (3 pls1, Sa) < p(51, 82) + p(s3, 53)-
" The function p is called a metric on S.



1: Some point set topology

Given a point s, in a metric space S and a real number a, the ball of radius
a about s, is defined to be the set

B(@) = [s €8; pls, 50) < al.

EXAMPLE. Let S be the plane, that is, the product of the set of the real num-
bers with itself. We define three metrics on S as follows.
For P; = (x;, y1) and P; = (x5, y3) two points in S,

p1(P1, Po) = V(x3 — x1)% + (ya — )%
pa(Py, P3) = max {|x; — xi|, |ya — »il},
pa(Py, P) = X3 — x1| + |ya — »i.
The ball of radius a about the point 0 = (0, 0) relative to each of these metrics

is indicated by the shaded areas in Figure 1.2. Note that a ball does not
necessarily have a circular, or even a smooth, boundary.

p1(80) <a px(s,0) < a P(s0) < a
Figure 1.2

Remark. The three metrics defined above provide the plane with three
distinct structures as a metric space. Yet for studying certain properties of
these spaces, these metrics are equivalent. Thus, if we want to know, for
example, whether 0 is a limit point of a set 7= S, we ask whether there is a
sequence of points in 7 which converges to 0; that is, whether a sequence {s,}
of points in T exists such that given any ¢ > 0, there exists an N such that

p(5q,0) < &

for all n > N. It is not difficult to see that the answer to this question is

" independent of whichever of the above metrics we use for p; that is, given
e > 0, there exists such an N using p; if and only if there exists such an N -
using p,, etc. The answer does not depend on the shape of the ball of radius e,
but only on its “fatness” or “openness.” For this reason among others, it is

6
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1.2: Topological spaces

convenient to gather together those properties of a metric space that are
essential for describing “openness” and to use such properties to define a
more abstract structure, a topological structure, in which we can still talk
about limit points and in which the three metric structures on the plane
 described above will give the same “open sets.”

Definition. A ropological space is a set S together with a collection # of sub-
sets of S (that is, % is a subset of 2°) satisfying the following conditions:
(la) g e, Se¥.

(2a) If U,,. .., U,€ % then ()}, U, e %.
(3a) Arbltrary unions of elements in % lie in %; that is, if # < %, then
UUE‘ Ue qz

The elements of % are called open sets in S. The collection # is called a
topology on S.

Remark. We shall often suppress the  and simply refer to S as a topo-
logical space.
Definition. Let (S, %) be a topological space. A set A < S is closed if it is the
complement of an open set, that is, if 4’ € %.

Remark. By taking complements in conditions (1a), (2a), and (3a) above,
one sees that the collection % of closed sets satisfies the following conditions.

(Ib) z €¥,Se¥.
(2b) If 4,,...,A, €%, then | J}'-, 4,€¥.
(3b) Arbitrary intersections of elements in € lie in ?

Remark. A topology can be described by specifying the collection of closed
sets equally as well as specifying the collection of open sets.

Definition. Let (S, %) be a topological space. Let A = S. A point se Sis a
limit point of A if for each U € % such that se U, {

U-{sHNAd+o.
Definition. The closure of a set A < S, denoted by 4, is the set
A = AV [seS;sis a limit point of 4].

Theorem 1. The closure A of a set A is closed.

Proor. We must show that 4" is open. For this it suffices to show that for
each s € 4’ there exists an open set U, withs e U, € 4". Then s € U, foreach s

7



1: Some point set topology

implies A’ © | J,ez- U, and U, = 4’ for each s implies J,ez- U, = 4'. Thus
A’ = Usea U, is a union of open sets and hence is open.

Now let s € A”. Then s is not a limit point of 4, so there exists an open set
U, such that se U, and (U, — {s}) " 4 = @. Furthermore, s ¢ 4 because
s ¢ A and hence, in fact, U, " A = &. Since each element of U, is contained
in an open set, namely U, itself, whose intersection with 4 is @, it follows that
U, contains no limit points of A and'U, N 4 = o ; thatis, U, < 4. O

Theorem 2. A set A is closed if and only if A = A.

PROOF. Assume 4 is closed. Then A’ is open. If s ¢ 4, then A4’ is an open set
containing s such that (4’ — {s}) N 4 = . Thus s is not a limit point of A.
Hence all limit points of A4 lie in 4; that is, 4 = 4.

Conversely, if A = 4, then A is closed by the previous theorem.: O

Definition. A set # < 25 is a basis for a topology on S if the following con-
ditions are satisfied:

(Ic) o € &.
(2¢) Upe# B = S.
(3¢) If B, and B, € &, then B, N B, = | Jz4 B for some subset Z < 4.

Theorem 3. Let S be a set and & be a basis for a topology on S. Let
"Yg = [Ue25; Uis a union of elements of %#).

Then %g‘is a topology on S, the topology generated by #.

PrROOF. We must verify that %g satisfies the three open-set axioms for a
topology on S. :
By (1c) and (2c) in the definition of a basis, both @ and S € g so that
condition (1a) in the definition of a topological space is satisfied.
~ Suppose ¥" < %g. Then ~UVEy V = Uver (Use#y, B) = Uspes B where
By < B foreach Ve ¥ and Z = Uyey By < #. Hence condition (3a) holds.
We prove condition (2a) by induction. We assume that the intersection of &
sets in Z g lies in 4. (For k = 1, the statement is automatically true.) Sup-
pose then U,,..., U.., € g. By the inductive hypothesis, U; N:---N U, €
% g ; that is, there exists a subset #, = #suchthat U, N- - -N Uy = Up,ea, B:.
Since Uy, € g, there exists a subset #, < Z suchthat Uy, = Up,c@, Ba.
Hence

Upne--n Uk+1=(U Bl)n(U B,) = |J BN By).

Bied#, Bgedly gxggx
26d 3

But by condition (3c) in the definition of a basis, B; N By € %g.
Henw U1 N:--N Uk.;.lewy. ¢ : D




1.2: Topological spaces

Theorem 4. Let (S, p) be a metric space. Let
%# = [Bya); s € S and a is a nonnegative real number ].

 Then % is a basis for a topology on S.

PROOF

(1) B(0) = @ forany s€ S, so & € &.

(2) Forany a > 0, S = Uses By(a), s0 S = Uszea B.

(3) Let sy,52€ 8, let a;,a; > 0, and let T = B, (a,) N B,,(a;). We may
assume T # &.

To show that T is a union of elements of £, it suffices to show that for each
s'e T there exists @, > 0 such that B,(a,) < T. For then T < J,cr By(a;) < T.
The first inclusion follows because s € B,(a,) for each s € 7, and the second
because B,(a,) < T for each s. Thus T = | J,er B,(a,) is a union of elements
of &.

Now for s€ T, let b, = p(s, s,) for j = 1, 2. Then b, < g, since s € B,(a)).
Let a, = min {@, — b,, a; — b,}. Then.q, > 0, and we claim that B,(a,) < $T
For suppose ¢ € By(a,). Then

P(t, S,) - P(t, S) o KS,-S,) < a, b x b] S a; — b, + b, = a;, \
soteB,(a),j=1,2. O

Corollary. A metric ;space”h'as the structure of a topological space in which the
open sets are unions of balls.

Definition. Let S be a set, and let £, and %, be bases for topologies on S. %,
and %, are equivalent if they generate the same topology; that is, 1f
Ug _fIIg,

Theorem 5. Let S be a set, and let B, and &, be bases for topologies on S. Then
%, and B, are equivalent if and only if

(1) for each s € S and B, € #, with s € B, there exists By € #; such that
S € B, < By, and
. (2) for each s € S and B, € B, with s € B,, there exists B, € #, such that
S € B, < B,.
PROOF. Suppose #;, and %, are equivalent, and let se B, € %#;. Then
“ByeUg, = Ua,, 50 B, = \Up,ed, By for some subset &, < #,. Hence
s€ B, < B, for some Bye 4, < 9, Thus (1) is proved, and (2) is proved
similarly. i
Conversely, suppose (1) and (2) are satisfied. We first show that Ug, < Usg,.
Let Be 2,. By (1) for each s € B there exists B, € #, such that s€ B, < B.
Now B < (U,c5 B, © B, 50 B = U,ep B € %gz Thus g, < %g,. Similarly,
using (2), @ga < ¥ @5 and so %g, = Ua,. O

9



