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Preface

The major purpose of this book is to introduce the main concepts of discrete
optimization problems which have a finite number of feasible solutions.
Following common practice, we term this topic combinatorial optimization.
There are now a number of excellent graduate-level textbooks on combina-
torial optimization. However, there does not seem to exist an undergraduate
text in this area. This book is designed to fill this need.

The book is intended for undergraduates in mathematics, engineering,
business, or the physical or social sciences. It may also be useful as a
reference text for practising engineers and scientists. The writing of this
book was inspired through the experience of the author in teaching the
material to undergraduate students in operations research, engineering,
business, and mathematics at the University of Canterbury, New Zealand.
This experience has confirmed the suspicion that it is often wise to adopt the
following approach when teaching material of the nature contained in this
book. When introducing a new topic, begin with a numerical problem which
the students can readily understand; develop a solution technique by using
it on this problem; then go on to general problems. This philosophy has
been adopted throughout the book. The emphasis is on plausibility and
clarity rather than rigor, although rigorous arguments have been used when
they contribute to the understanding of the mechanics of an algorithm. An
example of this is furnished by the construction of the labeling method for
the maximal-network-flow problem from the proof of the max-flow, min-cut
theorem.

The book comprises two parts—Part I: Techniques and Part II: Applica-
tions. Part I begins with a motivational chapter which includes a description
of the general combinatorial optimization problem, important current
problems, a description of the fundamental algorithm, a discussion of the
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need for efficient algorithms, and the effect of the advent of the digital
computer. This is followed by a chapter on linear programming and its
extensions. Chapter 2 describes the basic procedures of three of the most
important combinatorial optimization techniques—integer programming,
dynamic programming, and heuristic methods. Chapter 3 is concerned with
optimization on graphs and networks.

Part II poses a variety of problems from many different disciplines— the
traveling-salesman problem, the vehicle scheduling problem, car pooling,



Preface X

evolutionary tree construction, and the facilities layout problem. Each
problem is analyzed and solution procedures are then presented. Some of
these procedures have never appeared before in book form.

The book contains a number of exercises which the reader is strongly
encouraged to try. Mathematics is not a spectator sport! These exercises
range from routine numerical drill-type exercises to open questions from the
research literature. The more challenging problems have an asterisk preced-
ing them. The author is grateful for this opportunity to express his thanks
for the support he received from the University of Canterbury while writing
this book, and to his doctoral student John Giffin, who contributed to
Section 4.1. He is also extremely thankful to his wife Maureen, who not only
provided enthusiastic encouragement, but also typed the complete manu-
script. Finally, the author pays a hearty tribute to the staff at Springer-Verlag
New York for their patience, skill, and cooperation during the preparation
of this book.

Gainesville, Florida L. R. FouLps
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TECHNIQUES






CHAPTER 0

Introduction to the Techniques
of Combinatorial Optimization

0.1. The General Problem

Optimization is concerned with finding the best (or optimal) solution to a
problem. In this book we are concerned with problems that can be stated in
an unambiguous way, usually in terms of mathematical notation and
terminology. It is also assumed that the value of any solution to a given
problem can be measured in a quantifiable way and this value can be
compared with that of any other solution to the problem. Problems of this
nature have been posed since the beginning of mankind. One of the earliest
is recorded by Virgil in his Aeneid where he relates the dilemma of Queen
Dido, who was to be given all the land she could enclose in the hide of a
bull. She cut the hide into thin strips and joining these together formed a
semicircle within which she enclosed a sizeable portion of land with the
Mediterranean coast as the diameter. Later Archimedes conjectured that her
mathematical solution was optimal; that is, a semicircle is the curve of fixed
length which will, together with a straight line, enclose the largest possible
area. This conjecture can be proved using a branch of optimization called
the calculus of variations.

The problem just described has an infinite number of solutions as there is
an infinite number of possible curves of any given length. However, there is
an important class of optimization problems which have only a finite
number of solutions. The body of knowledge concerned with the theory and
techniques for these problems is called “combinatorial optimization” and it
is with this class that our book deals. Let S be the finite set of solutions to a
problem and assume each solution x € S, can be evaluated and assigned a
real number f(x) indicating its worth. This assignment may be in terms of
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some benefit, such as profit, which is to be maximized, or some detriment,
such as cost, which is to be minimized.

We now formally introduce the general problem of combinatorial optimi-
zation. Let

f:D->R
be a real-valued function with domain D. Let
SCD.

Definition 0.1. x* € S is a global maximum of f if
f(x*) = f(x) forall xS.

The definition of a global minimum is analogous.

Definition 0.2. x*€ S is a global extremum of f if x* is either a global
maximum or global minimum of f.

The “general maximization problem of combinatorial optimization” is to
find x* such that x* is a global maximum of f; that is, to identify x* such
that

f(x*)=Max(f(x)) x€ES.

The definition of the “general minimization problem of combinatorial
optimization™ is analogous.
S is called the set of feasible solutions and if

x€S,
is called a feasible solution or is termed feasible. If X € D and
f(x)=f(x) forall x€S,
is termed an upper bound for f on S. If
f(x)<f(x) forall xeS,
is termed a lower bound for f on S. If X is an upper bound for f on S and
f(x) =< f(x)

for all upper bounds x for f on S, then X is termed a least upper bound for f
on S. If X is a lower bound for f on S and

f(3) = f(x)

for all lower bounds x for f on S, then X is termed a greatest lower bound
for fon S.
Note that X may or may not be a member of S. Of course if

=

=

=

X€ES,
X is a global extremum of f.
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0.1.1. An Illustrative Example of a Combinatorial
Optimization Problem: The Shortest Hamiltonian
Path

This section is based upon an article by D. F. Robinson appearing in the
Proceedings of the First Australian Conference on Combinatorics, New-
castle, Australia, August 1972.

Of course the nature of S can vary considerably from one problem to
another. Even though S is finite it may be extremely large and further it
may not be an easy task to identify its elements. We now present an
illustrative example of a combinatorial optimization problem that is simple
in concept, in order to give the reader some idea of what is to come.

Let V= {v,,v,,...,0v,} be a set of n cities where n>1. Consider the
problem of finding a shortest itinerary which passes through all the cities of
V. Let d,; represent the distance from v; to v, 1<i<n, 1<j<n. The
distance matrix

D= [dij]nx”
is assumed to be symmetric in the sense that
d;=d; 1<i<n,1<j<n.

This problem is similar to one in the literature known as the traveling-sales-
man problem which is the subject of Section 4.2.
As V' has n members there are n! paths. We express a typical path as

x=<”a(1)’voc(2>~--*”or(n)>~

where {Uq (1)s Ve )5+ +3 U (ny } = { V15 V25--+5 U, }» @and x is the path which
begins at v ;) and then visits v ), Vg (3), and so on, ending at v, (). The
set S of solutions to this problem is

S= {<va(1),va(2),...,vam> {«(1), «(2),..., x(n)} ={1,2,...,n}}.

If x=C(0g @y VayresVoc(my) €S, then the value of x, f(x) is the length
of x,

n—1

f(x)z Z doc(i),cx(iﬂ)'

i=1

Then the problem is find
f(x*)=Min{ f(x)}.
xes

To each path x = (v (1), U 25+ +» Ve (), there corresponds a reverse path,
xR = (U (my» Vo (n—1--+» Ve (1 - Because d is symmetric, f(x)=f(x®) for
all x € S. Hence the minimum path will not be unique.
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We define the following elementary operations on a path:

(1) Break the path (vy (1), U (2)5-++» Ve () after some point v, 1, (2 <
m < n) and join Vg (,) 1y« 1)- 1h€ NeW path is
<Uoc(m)7ch(m+1)’---anz(n>~U<x(1)~Uoc(z)’---,Uoc(m—l)>-
This new path will be shorter than the original one if and only if

dcx(n). a (1) < da(m—l), o (m)"
(ii) Break the path (v (1), U (2)s--+» Ve (y) @fter some point v, ) (2 <
m < n —1) and then reverse the direction of the second part to yield
<vam,va(2),...,va(m_l),va(",,va("ﬁ”,...,vq(”,).

This new path will be shorter than the original one if and only if

dom-1), a(m <da(m-1), «(m:

(iii) The reverse of operation (ii). Break the path (vg (1), Ve 25+ 22 Ve (y)
after v () (2<m <n—1) and reverse the first half to give the path

<U<x(m)’Uu(nrl)*--wvo:(l)*ch(m+1)»Uor(m+2)-----Uo<(n)>'
This new path is shorter than the original if

doqy, amen) <dam). «(m+1)-
(iv) Take any pair of adjacent points vq (,,), U« (m+1, I the path
<Ucr(1)’voc(2)*“--”a(n)
and reverse their order to obtain

<Uor(1>’”cx<2)v--’Uoc(m—l)s"a(mﬂwch(nmU«<m+z>»~-~”cx<n)>-

The cases m=1 or m=n—1 have been dealt with in (ii) and (iii).
Otherwise the new path is shorter than the original if

do(m-1y, c (m+1) T Ao (my, « (m+2) <D (m+2), « (m=1) T e (m), c(m+1)-

We now note some properties of these operations:

(a) If it is possible to obtain path y by an elementary operation on a path
x, then x can be obtained from y by an elementary operation.

(b) If a path y can be obtained from a path x by an elementary operation,
then path y®, the reverse of y, can be obtained from x* by an
elementary operation.

(c) Each path can be considered a permutation on {v,, v,,..., 0, }. Type (iv)
operations are in effect permutation transpositions.

It can be shown that any permutation can be expressed as a product of
transpositions. Hence any path can be transformed into any other path by a
finite sequence of type (iv) operations. Hence any pair of paths can be
transformed, one into the other, by a finite sequence of operations of types

(1)—-(@v).
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Table 0.1. A City-to-City Distance Table

Uy U U3 Uy Us Us U7 g Uy Uy
v, 201
vy 428 227

ve 207 156 348

vs 232 159 351 25

v 564 363 136 448 423

v; 73 274 501 186 211 634

vy 19 220 447 226 251 583 72

vy 508 307 176 340 314 118 526 527

v, 302 101 126 222 225 262 375 321 217

v, 165 210 437 65 90 513 144 184 405 311

Let us now search for a path of minimum length. The ideas will be made
more clear by examining a numerical example. Table 0.1 gives the distances
between a set of 11 cities.

In Table 0.2 we set out the successive shorter paths, represented by the
cities in order and the distances between them. The starting path A, consists
of the cities in order of increasing subscript. The greatest distance between
successive cities is 634 (from vy to v,). This is greater than d, ;; (=165).
We therefore split the path 4, between v; and v, and join v; to v,; by a
type (i) operation. We denote this break by the symbol A in the appropriate
place. The new path is denoted by 4,. We can never use type (i) operations
twice successively to any advantage. We now turn to type (ii) operations and
compare the distances between cities with the distances from the right-hand
side of a pair to v,. We find that v, is closer to v,; than v, is. So we form
path A, by reversing the section of the path from v, to v,,. This is denoted
by the symbols < and >. In A, the cities vy and vg are 527 apart. This
exceeds the distance between v, and v,. So a type (i) operation will reduce
this length. We continue using type (i) and (ii) operations until we reach
A,5. No further type (i) or (ii) operation will reduce the length of this path.
A type (iii) operation, reversing the order of the last three cities, will reduce
the length of A4,;. This produces path A4,,. No operation of any type will
reduce the length of A4,,, which is 965.

Note that the distance from v to v, is 634. Hence it is evident that any
shorter path must have one end “close” to v and the other “close” to v,. It
is then a simple matter to prove that A,, (with its reverse) is a global
minimum.

Definition 0.3. If, for all such x;
f('XO) Sf('xi)a

X, 1s said to be a local minimum of f.
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Definition 0.4. If, for all such x;
f(x0) = f(x,),

X, 1s said to be a local maximum of f.

Definition 0.5. If x, is either a local minimum of f or a local maximum
of f then x, is said to be a local extremum of f.

We may generalize the above approach. Consider the general minimiza-
tion problem of combinatorial optimization as defined in Section 0.1. We
can define on S a collection of elementary operations with the following
properties:

(a) If y €S can be obtained from x € S by an elementary operation, then
x can be obtained from y by an elementary operation.

(b) Given any two x, y €S there is a finite sequence of elementary opera-
tions which convert x into y.

The elementary operations thus define a connected graph, G (see Section
5.2), whose vertices are the members of S and whose edges join members of
S linked by an elementary operation. A solution process can be constructed
as follows. Begin at an arbitrary vertex x, € S and evaluate f(x,). We then
evaluate f(x;) for each x; adjacent to x,, in G.

If no such local minimum is detected, choose an x; € S adjacent to x,, for
which

f(x0)>f(x_,') (0.1)

and repeat the above process with x, replaced by x,. One method of
selecting x; at each stage is to choose the first member of S adjacent to x,
for which it is discovered that (0.1) holds.

The above process must terminate in the identification of a local mini-
mum in a finite number of steps as S is finite. A possible minor complica-

tion may arise in that a “plateau” x, may be detected where
f(x,)=/f(x))

for some x; adjacent to x,, but with no adjacent vertex x, such that
f('xp) >f(xk)'

If this situation arises, the set S of all such vertices x; is progressively
examined in the hope that a vertex x; may be found which is adjacent to a

vertex x; € S’ and
f(x,)=f(x;)>f(x,).

Then the process is repeated with x, replaced by x,.
Some exercise of judgment is needed in the application of this process. If
the number of vertices adjacent to any given vertex is usually relatively



