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Preface

The present book is the result of teaching the course [7-14, Mathematical Foundation for
Computer Science at Institute of Informatics and Communication (IIC), University of Delhi
South Campus. The present text is suitable for a one- or two-semester course and covers topics
incorporated in the course work for students of Computer Science, Computer Application,
Electronics & Communication, Telecommunication Engineering and Informatics and Information
Technology at Indian and other Universities. I was guided to write this book because of my
interest in the subject of Discrete Mathematics and Theoretical Computer Science. Keeping
this in view, the primary emphasis in the book is to discuss basic issues in Discrete Mathematical
Structures and also in the area of Mathematical Theory of Computation. At IIC, we have
students coming from different streams such as Mathematical Sciences, Physical Sciences,
Electronics and Engineering. Even though they are quite familiar and conversant with basic
algebra, calculus, differential equations, integral transforms etc., it is observed that they find
the subject of discrete mathematics as somewhat difficult. Further discussion with many of
them, during last several years, suggest that the students in general want to focus on the
relevance and practicality of various ideas involved in the area of Discrete Mathematics. This
aspect has been taken into account during various stages of this project. It is already known
that the discrete mathematics is the mathematics of discrete objects and their binding
relationships. Developments in digital technology during the second half of the last century
coincided with interest in the subject of discrete mathematics. It is now established that the
various practical issues involved in the theory of computation involves basic understanding of
some abstract structures and their formulations as discussed in the text. The understanding of
such formulations further helps in developing ideas involved in data structures and algorithms
and their performance. These ideas along with the concept of finite state machine and automata
enables one to visualize and formulate the basic ideas of the theory of computation. In the
present text I have tried to concisely present various conceptual ideas involved at various level
with examples of their applications. The emphasis is made to show the relevance and practical
application of the ideas involved in discrete mathematics. I feel that the present text is self
contained and user friendly and hopefully the language is simple for students and amateurs to
understand and appreciate the basic ideas of mathematics as used in the theory of computation.
Suggestions for improvement are welcome and may be sent to mrinal @iic.ac.in

M.K. Das
IIC, UDSC
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1

Elements of Set Theory

A subject called set theory has been identified as even more basic than arithmetic and geom-
etry by mathematicians during the last century. It provides important basic concepts of contem-
porary mathematics. The ideas of set theory find application in all branches of mathematics as
they form a powerful language for reasoning about various mathematical objects. Intuitively
we define a set as collection of objects. The objects in such a collection are referred to as set
elements. Even though such a definition lacks rigors, we use it in much the same way as a
point and a line are left undefined in geometry. In this chapter, we assume that a set is
determined when a plurality (consisting of a number of things) is bunched together into a
single entity. For instance a set called Hindi alphabet comprises 49 things called letters.
Similarly the real number system could be considered as a set formed collectively from things
each of which is a real number.

1.1 Basic Notation

In order to make the concept of a set more precise, we distinguish things which are collected
together in a set from those which are not. Because of this, the set notation and theory must be
precise and unambiguous. It is customary to designate a set by capital letters A, B, P, Q, X, Y
etc. When the number of things or objects comprising a set is small, the set is denoted by
listing the elements within the braces {}, thus establishing the singular nature of the set. For
instance a set of digits in the binary system of enumeration is denoted by X = {0, 1}. Similarly
A = {a, e, i, 0, u} denotes the set of vowels in English language.

We represent the relationship between a set and its elements by the symbol € (belongs to)
in the following way:

ieV



2 Discrete Mathematical Structures

means that the element i is a member of the set named V. Alternatively such a representation
also means ‘i belongs to V’ or ‘i is in V’ or ‘i is an element of V’. If however, an element say
d does not belong to a set V above, we write

de V.
For a large set, the enumeration could be done without actually listing all the elements. For
instance, 26 letters of the set English alphabet could be described as:

A = {a; b; 6, wees X V52)
where three consecutive dots, called ellipsis, mean that the list should be continued in accordance
with the pattern indicated. For instance the set of natural numbers could be represented as:

N=({1,23,..}
Similarly the set of integers is represented as:

Z={...,-2,-1,0,1,2,..}
Another but convenient notation of writing a set is as:

B = {x: P(x)},
where x is a variable and P(x) is a descriptive phrase called predicate. The variable is mostly
indicated by a lower case letter and the predicate is a description of the allowed replacement
for that variable. They are usually separated by a colon : or by a vertical bar |. For instance the
set B = {x: x is an integer, x < 0}, means that B is a set of x such that x is an integer and x is
less than zero. Similarly the set E = {x: x*> — 4 = 0} means that the set E has elements x such
that x* — 4 = 0. Since x = +2 are the solutions of the equation x* — 4 = 0, we have E = {2, -2}.
The two forms are equivalent.

Further we would like to mention here that the order in which the elements of a set are
listed is not important. Thus the representation of the set {1, 5, 2} by {1, 2, 5}, (2, 5, 1},
{5, 1, 2} etc., are all equivalent. Moreover the listing in a set might have repeated element(s)
and this may be ignored. Thus {1, 5, 2, 5, 1} is another representation of {1, 5, 2}.

1.1.1 Subsets
We may write the following definition for the subset of a set:

Definition: Let A and B be two sets. If every element of A is also an element of B, then A is a
subset of B and is written as A < B.

Here the symbol c is called the inclusion or subset relation. Thus A < B also means ‘A is
included in B’ or ‘A is contained in B’. If A is not a subset of B, we write A Z B. For instance
if A={2,5,7}and B = {5, 7, 2, 3,9}, we find A c B since for every x € A, we have x € B.
Similarly if N, Z, Q and R respectively denote the set of positive integer, set of integers, set of
rational numbers and set of real numbers then

NcZcQcR
In the foregoing definition on subset, observe that the possibility of A = B is not excluded.
Excluding such a possibility reduces the set as proper subset of B or A — B.

Also if A be a set and B = {A, {A}}. We find A € B and {A} € B and {{A}} < B.

However A £ B.
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Example 1 If A = {1, 2,3} and B = {{I, 2, 3}, 1, 2, 3}. What can be said about the set
relationship between A and B?

Solution 1t is readily seen that A < B and A € B.

1.1.2 Equality of Sets

We have the following definition for the equality of sets:
Definition: Let A and B be two sets. Then two sets are equal i.e., A = B, if and only if for
every x € A, x € B and vice-versa. In other words if A < B and B < A then A = B.

Example 2 Consider two sets A = {2, 1, 3,6} and B = {6, 1, 2, 3}. Since every element of
A is also an element of B and vice-versa, we have A = B. Note that the ordering of elements of

A or B is unimportant.

1.2 Power Set

We define the power set as follows:
Definition: Let A be a set consisting of n elements. The set of all subsets of A is called the
power set of A. It consists of 2" elements.

Example 3 For the set A = {a, b, c, d}, find the power set Z?(A) of A?

Solution Here we find four element subset as A = {a, b, ¢, d}; three element subsets as {a,
b, c},{b, c,d}, {a, c, d}, {a, b, d}; two element subsets as {a, b}, {a, c}, {a, d}, {b, ¢}, {b, d},
{c, d}; and one element subsets as {a}, {b}, {c}, {d}. Further zero element subset is ¢. Thus
in all there are 16 subsets or 2* subsets of A. The power set 97 (A) is also denoted as plal

1.3 Complement of a Set

Definition: Let A and B be two sets. The set consisting of all elements of B which are not in A
is called the complement of A and B and is denoted by B — A.

In the set builder notation, we may write B — A = {x: x € B, x ¢ A}. To find the
complement of A in B, we eliminate in B all elements which belong to A.

For instance Z — N corresponds to a set containing the element zero and all negative

integers.

1.4 Universal Set

In a set the elements usually belong to some large set called the universal set U. A universal
set, for instance, in plane geometry consists of all points in the plane; the elements of the set
A = {1, 2, 3} may be treated as belonging to a universal set U = N.

1.5 Null Set

We define a null set or an empty set ¢ as a set that has no element in it. It is also represented as
{ }. Thus for any set A, we have ¢ < A as there are no elements of ¢ that are not in A. For
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- ~ . ey . 2
instance the square of a real number is always positive. Hence {x: x is a real number and x~ = -3}
is a null set 0.

1.6 Basic Set Operations

Addition and multiplications are examples of binary operations on numbers. These operations
could be defined in many other contexts and are not restricted to numbers only. The union,
intersection, and complement are some basic operations on sets. Based on these operations, set
theory offers a well defined mathematical structure and becomes an indispensable tool in
solving quite complicated combinatorial problems.

The basic idea, of a Venn diagram, could be used to understand and visualize the basic set
operations and set relationships. In Venn diagram, the largest set under consideration, U-the
universal set is portrayed by a rectangle while its various subsets are represented by circular
regions inside it. The Venn diagram (Fig. 1.1) shows the set A separating U into two disjoint
pieces A and A (or AS—the complement of A (shaded region). In the following section, we
will define the basic operation on sets and their representation in Venn diagram.

Fig. 1.1 Venn diagram
Definition: Let A and B be two sets. The set of all elements € A or € B (or in both A and B) is
called the union of A and B and is abbreviated as A U B.
Alternatively A U B = {x: x € A or x € B}. The Venn diagram of union of A and B is
shown below (Fig. 1.2).

v

Fig. 1.2 The shaded region showing A v B
The union of n sets A;’s, i = 1, n written as:
n
AJUALUA;U...UA, = UA

i=1

represents the set of elements that belongs to one or more of the sets A;.
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Definition: Let A and B be two sets. The set of all elements which are both in A and B defines
the intersection of set A and B and is symbolically written as A N B.

Alternatively A M B = {x: x € A and x € B}. The Venn diagram of intersection of two sets
A and B is shown below (Fig. 1.3).

g

Fig. 1.3 The shaded region A N B

u

The intersection of n sets A;’s, i = 1, n written as:
n
Alf'\AzﬂA:;f'\...ﬁA”: nA
i=1

represents the set of elements which belongs to all of the sets A,.

The following theorem provides the relation between the union and intersection:
Theorem: Let A and B be two sets. If U is the universal set then $ c A NB cA cA UB
c U.
Proof: The null set is a subset of any set. If x € A N B then by definition, x € A and x € B. If
x € A, then it is in at least one of the sets A and B. Hence x € A U B. Since Aand Be U, A
uBcU.

Example 5 LetA={1,2,3,4,5},B={2,4,5,6,7}and C={1,15,17}. Find A UB, A
NB,AnCand B nC?

Soution Using the definition of basic set operations, we find that
AuB={1,2,3,4,56,7}=B U A,
ANB={(2,4,5}=BnNA,
AnNnC={l1},
BN C={}=¢ {If two sets are such that no element is common then the two sets are said to
be disjoint or nonintersecting}.

Example 6 1fA={2,4,6,8,10,...},B={1,3,5,7,9,....}then AUB=Nand An B =¢.

Example 7 For any set A, A U A=A and A N A = A. Therefore, using the foregoing
theorem, it is readily seen that ¢ € A.

Example 8 The Venn diagram for union and intersection of any three sets could be drawn
as (Fig. 1.4).

The cqmplement of set A with respect to a set B and vice-versa, defined earlier could be
represented by the following Venn diagrams (Fig. 1.5).



