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Message from the Conference Chairs

The Real-Time Systems Symposium provides an annual forum for exchanging information on
emerging principles and practices underlying real-time computing. As in recent years, we
continue to witness increasing interest in this field due to a better appreciation of the need for
rigorous and scientific solutions to the highly interrelated problems of developing systems that
have demanding requirements for correctness, dependability and timeliness. Many of the ideas
formulated by researchers in the recent past are now being deployed in mainstream applications.
This has given a major impetus to the field as a growing number of researchers and developers
tackle the many challenging problems that remain. On a worldwide scale, RTSS is attracting a
large international contingent: in the program committee, in terms of the submissions, and in the
accepted papers. To encourage the dissemination of findings in experimental development work.
we have continued the synopses sessions from the previous three years.

The technical program consists of 22 regular papers and 10 synopsis selected from a total of 107
submissions from fifteen countries. The program reflects recent developments in architecture,
communication, databases, operating systems, performance, programming languages, scheduling,
and formal methods for real-time applications. It also reflects an increased emphasis on system
and tool implementation, evidencing a maturation of the underlying principles.

Each submission received at least four reviews. We are extremely grateful to the program
committee members for their care and diligence in obtaining quality reviews and for making hard

decisions during the program committee meeting. Outside reviewers did an excellent job in
providing additional guidance. for which we express our sincere thanks.

RTSS '94 would not be possible but for the able and hard work of many. We wish to thank each
member of the conference committee for Heiping to ensure that the symposium runs smoothly:
Walt Heimerdinger for expertly handling of the conference finances. Sandra Ramos-Thuel who
was instrumental in bringing RTSS '94 to San Juan and thereby taking RTSS outside the 48
contiguous states for the first time, Wei Zhao for his timely handling of all matters related to
publicity, Prabha Gopinath for serving as our liaison with industry. and Linda Buss for her
professional handling of registration. Finally, our thanks to Penny Storms of the IEEE Computer
Society Press for her efforts related to the publication of the proceedings.

Farnam Jahanian Krithi Ramamritham
General Chair Program Chair
Universiry of Michigan University of Massachuserts, Amherst
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Efficient Aperiodic Service under Earliest Deadline Scheduling

Marco Spuri”

Giorgio C. Buttazzo

Scuola Superiore S.Anna
via Carducci, 40 - 56100 Pisa - Italy

spuri@pegasus.sssup.it, giorgio¢sssupli.sssup.it

Abstract

In this paper we present four new on-line algo-
rithms for servicing soft aperiodic requests in real-time
systems, where a set of hard periodic tasks is scheduled
using the Eariiest Deadline First (EDF) algoritim.
All the proposed solutions can achieve full procezsor
utilization and enhance aperiodic responsiveness, still
guaranteeing the ezecution of the periodic tasks. Op-
eration of the algorithms, performance, schedulability
analysis, and implementation complezity are discussed
and compared with classical alternative solutions, such
as background and polling service. Ezienstve simula-
tions show that algorithms with contained run—time
overhead present nearly optimal responsiveness.

A valuable contribution of this work is to provide the
real-time system designer with a wide range of practi-
cal solutions which allow to balance sfficiency against
implementation complezity.

1 Introduction

Many complex control applications include tasks
which have to be completed within strict time con-
straints, called deadlines. If meeting a given deadline
is critical for the system operation, and may cause
catastrophic consequences, that deadline is considered
to be hard. If meeting time constraints is desirable,
but missing a deadline does not cause any serious dam-
age, then that deadline is considered to be soft. In
addition to their criticalness, tasks that require regu-
lar activations are called periodic, whereas tasks which
have irregular arrival times are called aperiodic.

The problem of scheduling a mixed set of hard pe-
riodic tasks and soft aperiodic tasks in a dynamic
environment has been widely considered when peri-
odic tasks are executed under the Rate Monotonic

*This work has been supported in part by the CNR of Italy
under a research grant.

1052-8725/94 304.00 © 1994 [EEE

(RM) scheduling algorithm [11]. Lehoczky et al
[10] investigated server mechanisms (Deferrable Server
and Priority Exchange) to enhance aperiodic respon-
siveness. Sprunt et al. {14] described a better ser-
vice mechanism, called Sporadic Server (SS). Then,
Lehoczky and Ramos—Thuel [8] found an optimal ser-
vice method, called Slack Stealer, which is based on
the idea of “stealing” all the possible processing time
from the periodic tasks, without causing their dead-
lines to be missed. The same algorithm has been ex-
tended in [13) to handle hard aperiodic tasks, and in
[6], to treat a more general class of scheduling prob-
lems.

All these methods assume that periodic tasks are
scheduled by the RM algorithm. Although RM is an
optimal aigorithm, it is static and in the general case
cannot achieve full processor utilization. In the worst
case, the maximum processor utilization that can be
achieved is about 69% [11], whereas in the average
case, for a random task set, Lehoczky et al. [9] showed
that it can be about 88%.

For certain applications requiring high processor
workload, a 69% or an 88% utilization bound can rep-
resent a serious limitation. Processor utilization can
be increased by using dynamic scheduling algorithms,
such as the Earliest Deadline First (EDF) [11] or the
Least Slack algorithm [12]. Both algorithms have been
shown to be optimal and achieve full processor utiliza-
tion, although EDF can run with smaller overhead.

Scheduling aperiodic tasks under the EDF algo-
rithm has been investigated by Chetto and Chetto [4]
and Chetto et al. [5]. These authors propose accep-
tance tests for guaranteeing single sporadic tasks, or
group of precedence related aperiodic tasks. Although
optimal from the processor utilization point of view,
these acceptance tests present a quite large overhead
to be practical in real-world applications.

Three server mechanisms under EDF have been re-
cently proposed by Ghazalie and Baker in {7]. The
authors describe a dynamic version of the known De-



ferrable and Sporadic Servers [14], called Deadline De-
ferrable Server and Deadline Sporadic Server, respec-
tively. Then, the latter is extended to obtain a simpler
algorithm called Deadline Exchange Server.

The aim of our work is to provide more efficient al-
gorithms for the joint scheduling of random soft aperi-
odic requests and hard periodic tasks under the EDF
policy. Our proposal includes four algorithms hav-
ing different implementation overheads and different
performances. We first present an algorithm, called
Dynamic Priority Exchange, which is an extension of
previous work under Rate Monotonic (RM). Although
much better than background and polling service, it
does not offer the same improvement as the others.
A completely new “bandwidth preserving algorithm”,
called Total Bandwidth Server, is also introduced.
The algorithm significantly enhances the performance
of the previous servers and can be easily implemented
with very little overhead, thus showing the best per-
formance/cost ratio. Finally, we present an optimal
algorithm, the EDL Server, and a close approxima-
tion of it, the Improved Priority Exchange, which has
much less run-time overhead. They are both based
on off-line computations of the slack time of the peri-
odic tasks. The proposed algorithms provide a useful
framework to assist an HRT system designer in select-
ing the most appropriate method for his or her needs,
by balancing efficiency with implementation overhead.

In the definition of our algorithms, we assume that
all periodic tasks have hard deadlines coincident with
the end of their periods, constant period T; and con-
stant worst case execution time C;. All aperiodic
tasks do not have deadlines and their arrival time is
unknown.

For the sake of clarity, all properties of the proposed
algorithms are proved under the above assumptions.
However, they can easily be extended to handle peri-
odic tasks whose deadlines differ from the end of the
periods and that have non null phasing. In this case,
the guarantee tests would only provide sufficient con-
ditions for the feasibility of the schedule. Shared re-
sources can also be included using the same approach
found in (7], assuming an access protocol like the Stack
Resource Policy [1] or the Dynamic Priority Ceiling
(3]. The schedulability analysis would be consequently
modified to take into account the blocking factors due
to the mutually exclusive access to resources.

Due to lack of space, ail proofs and some of ihe
simulations have been omitted. See {15] for a complete
description.

2 The Dynamic ’riority Exchange Al-
gorithm

In this section we introduce the Dynamic Priority
Exchange server, DPE from now on. The main idea
of the algorithm is to let the server trade its run-
time with the run—time of lower priority periodic tasks
(under EDF this means a longer deadline) in case there
are no aperiodic requests pending. In this way, the
server run—time is only exchanged with periodic tasks,
but never wasted (unless there are idle times). It is
simply preserved, even if at a lower priority, and it can
be later reclaimed when aperiodic requests enter the
system.

2.1 Definition of the DPE Server

The DPE server is an extension of the Priority Ex-
change server [10] adapted to work with the EDF al-
gorithm. In the definition of the server we make use
of aperiodic capacities, associated to the server itseif
and to each deadline of periodic task instances. They
are updated by the algorithm we are going to describe
and, when greater than zero, are considered by the
scheduler as schedulable entities. When scheduled.
they are used to service pending aperiodic requests.

The server has a specified period Ts and a capac-
ity Cs. At the beginning of each period, the server’s
aperiodic capacity, C%, where d is the deadline of the
current server period, is set to Cs. Each deadline d
associated to the instances (completed or not) of the
i-th periodic task has an aperiodic capacity, Cg;, ini-
tially set to 0. The aperiodic capacities (those greater
than 0) receive priorities according to their deadlines
and the EDF algorithm, like all the periodic task in-
stances (ties are broken-in favour of capacities, t.e.,
aperiodics). Whenever the highest priority entity in
the system is an aperiodic capacity of C units of time
the following happens:

o if there are aperiodic requests in the system, these
are served until they complete or the capacity
is exhausted (each request consumes a capacity
equal to its execution time);

o if there are no aperiodic requests pending, the
periodic task having the shortest deéadline is ex-
ecuted; a capacity equal to the length of the ex-
ecution is added to the aperiodic capacity of the
task deadline and is subtracted from C {i.e., the
deadlines of the highest priority capacity and the
periodic task are exchanged);



o if neither aperiodic requests nor periodic task in-
stances are pending, there is an idle time and the
capacity C is consumed until, at most, it is ex-
hausted.

In order to implement the algorithm, the only oper-
ations required in case of deadline exchange, are to up-
date the values of two capacities and to check whether
the “running” one is exhausted. Furthermore, the
ready queue can be at most twice as long as with-
out the server (there is at most one aperiodic capacity
for each periodic task instance). From these simple
observations we can conclude that whereas the im-
plementation of a DPE server is not trivial, the run—
time overhead does not significantly increase the typ-
ical overhead of a system using an EDF scheduler.

As far as the schedulability is concerned, the DPE
server behaves like any other periodic task. The dif-
ference is that it can trade its run-time with the run—
time of lower priority tasks. "Vhen a certain amount
of time is traded, one or more lower priority tasks are
run at a higher priority level, but their lower priority
time is preserved for possible aperiodic requests. This
run—time exchange does not affect the schedulability
of the task set, as shown in the following Theorem.

Theorem 1 Given a set of periodic tasks with pro-
cessor utilization Up and a DPE server with processor
utilization Us, the whole set is schedulable if and only
if

Up+Us <1,

where Up and Us are the utilization factors of the pe-
riodic task set and the DPE server, respectively. [m}

2.2 Resource Reclaiming

In most typical real-time systems, the processor
load of periodic activities, either statically or dynam-
ically, is guaranteed a-priori. This means that the
maximum possible load reachable by periodic tasks is
taken into account. When this peak is not reached,
that is, the actual execution times are lower than the
worst case values, it is not always obvious how to re-
claim the spare time for real-time activities (a trivial
approach is to execute background tasks).

In a system with a DPE server is very simple to
reclaim the spare time of periodic tasks for aperiodic
requests. It is sufficient that when a periodic task
completes, its spare time is added to the corresponding
aperiodic capacity. An example of this behaviour is
depicted in Figure 1. When the first aperiodic request
enters the system at time ¢t = 4, one unit of time is
available with deadline 8, and three units are available

Tgw6 Cgu3

Y
T, =8 C, =2

Ty=12 Cy=3 LI

Figure 1: DPE server resource reclaiming.

with deadline 12. The aperiodic request can thus be
serviced immediately for all the seven units of time
required, as shown in the schedule.

Without the reclaiming described, at time ¢t = 4
there would be a half unit of time available with dead-
line 8 and two and a half units available with deadline
12. The request would be serviced immediately for six
units of time, but the last unit would be delayed until
time ¢ = 11, when it would be serviced in background
(neither periodic tasks nor aperiodic capacities would
be ready at that time).

Note that reclaiming the spare time of periodic
tasks as aperiodic capacities does not affect the
schedulability of the system. It is sufficient to observe
that, when a periodic task has spare time, this time
has been already “allocated” to a priority level corre-
sponding to its deadline when the task set has been
guaranteed. That is, the spare time can be safely used
if requested with the same deadline. But this is ex-
actly the same as adding it to the task corresponding
aperiodic capacity.

3 The Total Bandwidth Algorithm

A different approach that we can follow to improve
the aperiodic response times is to assign a possible
short deadline to each aperiodic request. The assign-
ment must be done in such a way that the overall pro-
cessor utilization of the aperiodic load never exceeds
a specified maximum value Us.

This approach is the main idea behind the Total
Bandwidth Server (TBS), which we define in the fol-
lowing section. The name of the server comes from
the fact that, each time an aperiodic request enters
the system, the total bandwidth of the server, when-
ever possible, is immediately assigned to it.



Figure 2: Total Bandwidth server example.

3.1 Definition of the TB Server

The definition of the TB server is very simple.
When the k-th aperiodic request arrives at time t =
'k, it receives a deadline

dy = max(rk,dk_l) -+ fk‘,

s
where Cj is the execution time of the request and Us
is the server utilization factor (i.e., its bandwidth).
By definition dg = 0. The request is then inserted
into the ready queue of the system and scheduled by
EDF, as any other periodic instance or aperiodic re-
quest already present in the system.

Note that we can keep track of the bandwidth al-
ready assigned to other requests by simply taking the
maximum between rx and di_;. Intuitively, as it is
stated in Lemma 1, the assignment of the deadlines is
such that in each interval of time the ratio allocated
by EDF to the aperiodic requests never exceeds the
server utilization Us, that is, the processor utilization
of the aperiodic tasks is at most Us.

In Figure 2, an example of schedule produced by
the TB server is depicted. The first aperiodic request,
arrived at time ¢ = 6, is serviced (i.e., scheduled) with
deadline dy = 7 + 545- =6+ Elz_s'z 10. 10 being the
carliest deadline in the system, the aperiodic activity
is executed immediately. Similarly, the second request
receives the deadline dy = 72 + % = 21, but it is not
serviced immediately, since at time t = 13 there is
an active periodic task with a shorter deadline (18).
Finally, the third aperiodic request, arrived at time
t = 18, receives the deadline d3 = max(r3, d2) + % =
21 + 6Tl2_5 = 25 and is serviced at time ¢ = 22.

To show that full processor utilization can be
achieved with a TB server, too, we have first proved
that the aperiodic processor utilization does not actu-
ally exceeds Us.

Lemma 1 In each interval of time (t1, 2], if Capeis
the total ezecution time demanded by aperiodic re-
quests arrived at ¢y or later and served with deadlines

v

less than or equal to ty, en

Capc S (t'.’ - tl)US-

0

Now the following Theorem holds.

Theorem 2 Given a set of n periodic tasks with pro-
cessor utilization Up and a TB server with processor
utilization Usg, the whole set is schedulable if and only
if

Up+Us <1

3.2 Implementation Complexity

The implementation of the TB server is the sim-
plest among those seen so far. In order to correctly
assign the deadline to the new issued request, we only
need to keep track of the deadline assigned to the last
aperiodic request (dg-1). Then, the request can be
queued into the ready queue and treated by EDF as
any other periodic instance. Hence, the overhead is
only due to the increased length of the ready queue
if several aperiodic requests are pending at the same
time. However, this problem can be solved by manag-
ing a separate FIFO queue for the aperiodic requests,
and inserting only the first one into the ready queue.

In this way the overall overhead is practically negligi-
ble.

4 The EDL Algorithm

The Total Bandwidth algorithm is able to achieve
good aperiodic response times with extreme simplicity.
Still we could desire a better performance if we agree
to pay something more. For example, looking at the
schedule in Figure 2, we could argue that the second
and the third aperiodic requests may be served as soon
as they arrive, without compromising the schedulabil-
ity of the system. The reason for this is that, when
the requests arrive, the active periodic instances have
enough effective laxity (i.e., the interval between the
completion time and the deadline) to be safely pre-
empted. The main idea of the EDL algorithm is to
take advantage of these laxities.

4.1 Definition of the EDL Server

The definition of the EDL server makes use of some
results presented by Chetto and Chetto in (4]. In this
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Figure 3: Availability function under EDL.

paper, two different implementations of EDF, namely
EDS and EDL, are studied. Under EDS the active
tasks are processed as soon as possible, while under
EDL they are processed as late as possible. An ac-
curate characterization of the idle times produced by
the two algorithms is given. Moreover, a formal proof
of the optimality, in the sense that it guarantees the
maximum idle time in a given interval, is stated for
EDL. In the original paper, this result is used to build
an acceptance test for sporadic tasks (i.e., aperiodics
with hard deadlines) entering the system, while here
it is used to build an optimal server mechanism for
soft aperiodic activities.

Let us introduce the terminology used by the au-
thors in [4]. With f{} they denote the availability
function

(1

c. if the processor is idle at ¢
fFO=1 o

otherwise,

defined with respect to a task set ¥ and a scheduling
algorithm X. The function fJEDL, with J = {71, 72}, is
depicted in Figure 3. The integral of f{ on an interval
of time [t1,t2] is denoted by QF (t1,t2): it gives the
total idle time in the specified interval.

The result of optimality addressed above is stated
in Theorem 2 of [4], which we recall here.

Theorem 3 Let A be any aperiodic task set and X
any preemptive scheduling algorithm. For any insiant
tl

aEP(0,2) 2 2% (0,1).

a

This result lets us build an optimal server using the
idle times of an EDL scheduler. In particular, given
the periodic task set, the function f;‘: , which is pe-
riodic with hiperperiod H = lem(Ty,...,Tu), can
be represenied by means of two vectors. The first,
£ = {eo, €1, -- -, €p), Iepresents the times at which idle
times occur, while the second, D* = (Ag, AY,..., 4;),

o
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Figure 5: Example of schedule produced with an EDL
server.

represents the lengths of these idle times. The two vec-
tors for the example of Figure 3 are shown in Figure 4
(note that we can have idle times only after the arrival
time of a periodic task instance). .

The EDL server mechanism is based on the fol-
lowing idea: the idle times of an EDL scheduler are
used to schedule aperiodic requests as soon as pos-
sible, postponing the execution of periodic activities,
similarly to the effect of the “Slack Stealer” of [8].
The optimality stated in Theorem 3 will give us the
optimality of the server built with this idea.

In particular, when there are no aperiodic activities
in the system, the periodic tasks are scheduled accord-
ing to the EDF algorithm. Whenever a new aperiodic
request enters the system (and no previous aperiodic is
still active) the set J(t) of the current active periodic
tasks, plus the future periodic instances, is considered.
The idle times of an EDL scheduler applied to J(t),
that is, f‘?DtL)‘, are then computed and consequently
used to schedule the current aperiodic requests. See
Figure 5 for an example. Note that the response time
of the aperiodic request is optimal.

The procedure to recompute at each new arrival the
idle times of EDL applied to J(t) is described in [4]
and is not reported here. The worst case complexity of
the algorithm, which is O(Nn), where N is the number
of distinct periodic requests that occur in (0, H[, and
n is the number of periodic tasks, is relatively high
and can give the algorithm little practical interest. As
for the “Slack Stealer”, the EDL server will be used
to provide a lower bound to the aperiodic response
times, and to build a nearly opiimal implementable



algorithm, described in the next section.

4.2 EDL Server Properties

The analysis of the EDL server schedulability is
quite straightforward. In fact, the server allocates to
the aperiodic activities only the idle times of a partic-
ular EDF schedule, without compromising the time-
liness of the periodic tasks. This is more precisely
stated in the following Theorem.

vTheorem 4 Given a set of n periodic tasks with
processor utilization Up and the corresponding EDL
server (the behaviour of the server sirictly depends on
the characteristics of the periodic task set), the whole
set is schedulable if and only if

Up <1

(the server automaticaily allocates the bandwidth 1 —
Up to aperiodic requests). a

The property of optimality addressed above, that is,
the minimization of the response times of the aperiodic
requests, is stated in the following Lemma.

Lemma 2 Let X be any on-line preempiive algo-
rithm, J a periodic task set, and J an aperiodic re-
quest. If c‘;u(]}(]) is the completion time of J when
J U {J} is scheduled by X, then

EDL server

ERIITT(I) < Fupny ()

[®]

5 The Improved Priority Exchange Al-
gorithm

Although optimal, the algorithm described in the
previous section has too much overhead to be consid-
ered practical. However, its main idea can be use-
fully adopted to develop an implementable algorithm,
still maintaining a nearly optimal behaviour, as shown
later in the discussion of the simulations.

What makes the EDL server not practical is the
complexity of computing the idle times at each new
aperiodic arrival. This computation must be done
each time in order to take into account the periodic
instances partially executed or already completed at
the time of arrival.

We can avoid the heavy idle time computation us-
ing the mechanism of priority exchanges. With this
mechanism, in fact, the system can easily keep track

-~

PE

Figure 6: Improved Priority Exchange server example.

of the time advanced to periodic tasks and possibly
reclaim it at the right priority level. The idle times of
the EDL algorithm can be precomputed off-line. The
server can use them to schedule aperiodic requests,
when there are any, or to advance the execution of pe-
riodic tasks. In the latter case the idle time advanced
can be saved as aperiodic capacity at the priority lev-
els of the periodic tasks executed.
5.1 Definition of the IPE Server

To obtain the Improved Priority Exchange (IPE)
algorithm, we modify the DPE strver using the idle
times of an EDL scheduler. First, we obtain a far more
efficient replenishment policy for the server. Second,
the resuiting server is no longer periodic and it can
always run at the highest priority in the system.

The IPE server is thus defined in the following way:

o the IPE server has an aperiodic capacity, initially
set to 0;

e at each instant ¢t = ¢; + kH, with 0 < 1 < p
and k > 0, a replenishment of A} units of time is
scheduled for the server capacity, that is, at time
t = ep the server will receive Aj units of time
(the two vectors £ and D* have been defined in
the previous section);

e the server priority is always the highest in the
system, regardless of any other deadline;

o all other rules of IPE (aperiodic requests and pe-
riodic instances executions, exchange and con-
sumption of capacities) are the same as for a DPE
server.

The same task set of Figure 5 is scheduled with an IPE
server in Figure 6. Note that the server replenishments
are set according to the function f?DL, illustrated in
Figure 3.

The IPE schedulability is stated in the following
Theorem.



