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Preface

This book is written as a text for a basic one-year course in algebra at the

advanced undergraduate or beginning graduate level. The presentation is

oriented toward the applications of algebra to other branches of mathematics

and to science in general. This point of view is reflected in the selection of con-

structive methods of proof, the choice of topics, and the space devoted to

items related to current applications of algebra. Thus, modules over a prin-.
cipal ideal domain are studied via elementary operations on matrices. Con-

siderable space is devoted to such topics as permutation groups and the

Polya counting theory; polynomial theory; canonical forms for matrices;

applications of linear algebra to differential equations; representations of .
sgroups.

Prerequisites for a course based on this book are minimal: standard
one-quarter courses in the theory of equations and elementary matrix theory
suffice. Altogether there are 390 exercises and these constitute an integral
part of the book. Problems that require somewhat intricate arguments are
accompanied by complete solutions. The exercises contain a number of im-
portant results and several definitions. Occasionally they are used to remove
technical arguments from the mainstream of a proof within the section.
Students should at least read the exercises. Frequently exercises appearing at
the end of a section are mentioned within the section so that they can be easily
assigned at the appropriate time.

We have not hesitated to reiterate definitions and results throughout
the book. For example, conjugacy classes are discussed in the chapter on
group theory and again in the chapter on group representation theory. More-
over, some arguments are repeated if they are separated from their last oc-
currence by a substantial amount of intervening material. Each section of the

vii
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. book is followed by a Glossary which contains the page numbers for impor-

tant definitions, “name’ theorems, and special notations.

What follows is a description of the contents of each of the chapters.
A diagram illustrating the interdependency of the various sections appears
after the Preface.

Chapter 1, Basic Structures, introduces many of the basic ideas that
occur later in the book. Section 1.1, Sets and Functions, contains the usual
material on sets, functions, the de Morgan formulas, function composition,
Cartesian products, equivalence relations, quotient sets, systems of distinct
representatives, universal properties, partial and linear orderings, etc. To-
wards the end of the section, the Axiom of Choice is discussed in a heuristic
way. The equivalence of Zorn’s lemma and the Axiom of Choice is mentioned
without going into much detail. Section 1.2, Algebraic Structures, introduces
in order of increasing complexity some of the basic items developed in the
remainder of the book. Thus groupoids, semigroups, monoids, groups, mod-
ules, vector spaces, algebras, and matrices appear here. In this section we also
define permutation groups, free monoids, groupoid rings, polynomial rings,
free power series, etc. The section contains an extensive list of elementary
examples illustrating the definitions. The student can obtain considerable
practice in the manipulation of these basic ideas in the exercise sections.
Categories and morphisms appear in the exercises, but only peripherally.

Section 1.3, Permutation Groups, examines the details of permutation
groups and their structure. The basic properties of permutations (including
cycle structure and the simplicity of the alternating group of degree n for
n > 5) appear here. Many of the basic ideas of group theory are illustrated in
Section 1.3 in the context of permutation groups.

Chapter 2, Groups, is a rather thorough study of most of the major
elementary theorems in group theory. Section 2.1, Isomorphism Theorems,
carries the reader through the Jordan-Hoélder theorem, properties of solvable
groups, and composition series. Section 2.2, Group Actions and the Sylow
Theorems, is devoted to a systematic study of the three major Sylow
theorems. Since this section is highly combinatorial in nature, it seemed
appropriate to include the POlya counting theorem and some interesting
combinatprial applications. '

Section 2.3, Some Additional Topics, contains a number of more ad-
vanced items in group theory, beginning with the Zassenhaus isomorphism
lemma for groups. We then develop the Schreier refinement theorem for
subnormal series of a (not necessarily finitey group. This section also includes
the notion of a group with operators, admissible subgroups, and linear maps
on vector spaces.

Chapter 3, Rings and Fields, is the longest chapter in the book. Section
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3.1, Basic Facts, covers ring characteristics, universal factorization properties
of quotient rings, and the three ring isomorphism theorems.

Section 3.2, Introduction to Polynomial Rings, shows how an indeter-
minate can be constructed over an arbitrary ring. The ring extension theorem
is proved and used here to imbed a ring in a ring with an indeterminate. This

‘section also contains material on polynomials in several variables, including
the basis theorem for symmetric polynomials. Ascending and descending
chain conditions for ideals in a ring are discussed and the Hilbert basis theo-
rem for Noetherian rings is proved. Quotient fields of integral domains, and
more generally, rings of fractions with respect to ideals appear toward the end
of the section.

Section 3.3, Unique Factorization Domains, starts with the usual
material on polynomial division, the division algorithm and the remainder
theorem. The division algorithm is proved over a noncommutative ring—it
is required later in the study of elementary divisors over matrix rings. The
basic fact that any principal ideal domain is a unique factorization domain is
proved in Theorem 3.6. Example 6 shows how to calculate the greatest com-
mon divisor of two Gaussian integers using the Euclidean algorithm. Nilradi-
cals, quotients of ideals, and the Jacobson radical all occur at the end of this
section. '

Section 3.4, Polynomial Factorization, begins in the standard way with
Gauss’ lemma and goes on to show that unique factorization is inherited by
the polynomial ring over a unique factorization domain. Considerable space
is devoted here to the practical problem of factoring polynomials. Theorem
4.7 shows how to construct a splitting field for a polynomial, and Theorem
4.13 exhibits the relationship between any two such splitting fields. The sec-
tion concludes. with a proof of the primitive element theorem for fields of
characteristic zero. The exercises in this chapter contain a good deal of ma-
terial, but detailed solutions are included for all but the most routine prob-
lems.

Section 3.5, Polynomials and Resultants, deals with the classical theory
of polynomials. Sylvester’s determinant, homogeneous polynomials, result-
ants, and discriminants appear here, and the fundamental question of when
two polynomials have a common factor is investigated in some detail. This
section concludes with a statement and proof of the Hilbert invariant theorem
and a discussion of algebraic independence.

Section 3.6, Applications to Geometric Constructions, applies the pre-
ceding material on field theory to problems of ruler and compass construction
of regular polygons and angle trisection.

Section 3.7, Galois Theory, is devoted to the proof of the fundamental
theorem of Galois theory for fields of characteristic zero and its application
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to the classical problem of the solvability of a general polynomial of degree
n by radicals.

Chapter 4, Modules and Linear Operators, begins in Section 4.1, The
Hermite Normal Form, with the derivation of a normal form under left equiva-
lence of matrices over a principal ideal domain. This theorem is then applied
to finitely generated modules, yielding many of the standard results in
module theory as easy consequences. The Hermite normal form is also useful
in showing how to compute generators for ideals in a matrix ring. This section
also contains the basic theory of finite dimensional vector spaces, the Steinitz
exchange theorem, and the theory of linear equations.

Section 4.2, The Smith Normal Form, shows how to compute canonical
forms for matrices under right and left equivalence over a principal ideal
domain. The Smith form is then used to analyze the structure of finitely
generated modules as direct sums of free submodules. The fundamental theo-
rem of abelian groups appears in Corollary 7. We then determine all low-
order abelian groups in some of the examples and exercises. The cyclic
primary decomposition of a module is carried out in the exercises, together
with an analysis of finitely generated abelian groups given in terms of certain
defining relations, i.e., group presentations.

Section 4.3, The Structure of Linear Transformations, develops the
standard elementary divisor theery and matrix canonical forms over a field.
Our approach is computational, and the canonical forms under similarity are
derived in terms of the reduction of the characteristic matrix via equivalence
over a polynomial ring. Most of the important normal forms for matrices
under similarity occur here, e.g., the Frobenius normal form and the Jordan
normal form. A considerable part of the section deals with the problem of

-computing the elementary divisors of a function of a matrix. These important
results are used in other parts of mathematics, e.g., the theory of ordinary"
differential equations.

In the last section of the chapter, Introduction to Multilinear Algebra,
we introduce symmetry classes of tensors and briefly study the tensor, Grass-
mann, and completely symmetric spaces. As an example of the use of an-
inner product in a symmetry class, we show how the famous van der Waerden
conjecture concerning doubly stochastic matrices can be partially resolved.

The fifth and final chapter of the booi, Representations of Groups, is
essentially self~<contained and could be used for a short course on group
representation theory. The major part of the chapter is concerned with matrix
representations of finite groups. This permits us to achieve deep penetration
of the subject rather rapidly.

The contents of a course in algebra vary considerably and seem to
depend more on individual tastes and prejudices than do rorresponding
courses in analysis. The present book is no exception. However, a good deal
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of the material included can be justified in terms of its applications to other
parts of mathematics and science. We anticipate that a student who gains
reasonable mastery of the contents will be ready for more advanced courses in
algebra and the applications of algebra to a wide range of fields, e.g., com-
puter science, control theory, algebraic coding theory, system theory, numeri-
cal linear algebra, quantum mechanics, and crystallography.

References

Each chapter is divided into sections. Thus Section 4.2 is Section 2 of Chapter
4. Definitions, theorems, and examples are numbered serially within a section.

Thus Theorem 1.4 is the fourth theorem in Section 1. Any reference to a de-

finition, theorem, or example within the chapter in which it appears does not

identify the chapter. Any reference to a definition, theorem, or example oc--
curring in another chapter includes the chapter and section number. The

symbol ] is used to denote the end of a proof.
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Basic Structures

1.1 Sets and Functions

We shall assume that the reader is familiar with the notion of a set or collec-
tion of objects. The purpose of this section is to set forth the notation and
language used throughout this bopk.

If Sis a set and x is a member or an element of S, we write

x e S;
if x is not an element of S, we write
xe& S.

If X is a set consisting of all elements x for which a certain proposition p(x)is
true, we write

X = {x|p(x)}.
Thus, for example,
{x | x is an integer and } < x < 5}

is the set consisting o{' the integers 1, 2, 3, and 4. It is often feasible to explicitly
write out the elements of a set, e.g.,

X = {2,4,6} 0))

means that X consists of the numbers 2, 4, and 6. The curly bracket notation
in (1) is usually reserved for finite sets, but sometimes infinite sets can be writ-
ten this way by use of the ubiquitous “triple dot’’ notation, e.g.,

N={1,23 ...}

is the set of positive integers.



2 Basic Structures

If every element of the set X is in the set Y, we write
Xcy,
or Yo X,

and call X a subset of Y. If X C Y but X #+ Y, then X is a proper subset of Y.
The empty set or null set, denoted by @, is the set with no elements; clearly,

gcX

for any X. The power set of a set X is the set of all subsets of X. It is denoted by
P(X):

P(X) = {Y| Y C X}.

“If X contains only finitely many elements, we denote the number of elements
in X by | X|. Itis an easy exercise to verify that for a finite set X,

| P(X) | =2 @

(See Exercise 1). For example, if X is the set (1), then the elements of P(X)are
the eight subsets

g, {2, @, {6}, {24, (26}, {46, X

The union of two sets X and Y is the set of elements in either X or Y and is
denoted by

XuY.

The intersection of X and Y is the totality of elements in both X and Y and is
denoted by

Xny.

X — Y X —> | 4

We say that I is an indexing set or labeling set for a family of setsif toeach
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element of I there corresponds a well-defined set X in the family. The union
and intersection of a family of sets indexed by I are written, respectively,
U X,
i€l
and n X,
i€l
Thus, x & U,.; X, means that x € X, for some i € 1, whereas x € N, X
means that x < X, forevery i € I. For example, if I = N and X; is the closed
interval on the real line consisting of all x such that 1/i < x < 1, then
UX,={x]0<x<1)
i€EN

and nx ={1}.
ieN

If {X,|ie I}is a family of sets and X, N X, = & whenever i # j, we say
that the sets in the family are pairwise disjoint. If

X="U X,

‘ i€l

and the sets X, are pairwise disjoint, then {X, | i € I} is a partition of X.

If X and 'Y are sets, then the set of elements in Y but not in X is the
complement of X relative to Y, denoted by

Y — X.
If X C Y, we write
XC

instead of ¥ — X when Y is understood. The De Morgan formulas connect
the union, intersection, and complements of a family of subsets of Y:

(U X =0 X )
and (’r‘ll X) = _UI Xr ©3)

(see Exercise 2).

If X and Y are sets, then a function (or mapping or map) from Xto Yisa
well-defined rule that associates with each element x € X an element f(x)
€ Y. The set of all maps from X to Y is denoted by Y*. We write

fiX>Y
or in diagram form
x L.y
to indicate that f'is a function from X to Y.
The element f(x) € Y is the value of f at x, or the image of x under f;
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the set X is called the domain of f, written dmn f; the set Y is called the
codomain of f; the set
SX) = {ye Y| y=f(x) for some x € X}

is called the image or range of f, written im f.

If Z C Y, then f~1(2), called the inverse image of Z, is the set

/@)= xeX| fx) e Z).

A map f: X — Y is injective (1-1) or an injection if f(x,) = f(x,) implies

X; = X,; it is surjective (onto) or a surjection if f(X) = Y; it is bijective (1-1,

onto) or a bijection if f is injective and surjective. Other words are mono-
morphic (injective); epimorphic (surjective); a matching (bijective) of X and Y.

. (iqjec{ive map)

For example, the map f: N — N defined by the formula
fln) =

is an injection but certainly not a surjection. However, if by 2N we mean the
set of positive even integers, then f: N — 2N is a bijection. If g: N — {1,—1}
is defined by g(n) = (—1)", then g is an epimorphism or a surjection, and
g’'({1}) = 2N,
g'({-1) = N —2N. |

Two functions f: X —» Y and g: X — Y are equal if and only if (here-

after abbreviated “iff*’)
f(x) = g(x)

forall x € X.

The composite of two functions f: X — Y and g: Y — Z is the map A:
X — Z whose value at any x € X is h(x) = g(f(x)). The composite of fand g
is written gf or g - f. The composition of maps is associative: If X 5y,
Y5 Z and Z5 W, thenh-(g+ f) = (h - g) » f(verify!). Thus the triple

composite may simply be denoted by 4+ g - f.
If { Y, | i e I} is a family of sets, then the cartesian product of the
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members of the family is the set of all functions f: I — U,., Y, such that
f(i) € ¥, foreachi € I The cartesian product is denoted by

XY, ={f|fil-> U Y and f(i) € Y, for each i € I}.
i€l i€l

If (Y, ..., Y, isafamily of n sets, their cartesian product is also written
, Yl X ¢ e X Y.
and can be thought of as the totality of ordered n-tuples

=0 s )
neY,i=1...,n;thatis, f(i)=y,i=1,...,n Two n-tuples (y,,
.,ypand(z, .. .,z)areequaliffy, =z,i=1,...,n
Suppose I = [0,1], i.e., [ is the closed interval on the real line consisting
of all x for which 0 < x < 1. For each i € I'let Y, = I. We assert that the
cartesian product

x ¥,

iel
is in fact the set of all maps from I to /, i.e.,
I'=x Y,
iel
For, any f € X ¢, Y, is a function whose value at eachi € I is an element of
Y, =1L
The special map ¢,: X — X, called the identity map, is defined by
‘ () = x
foreach x € X.
If ZC Xand f: X > Y, then f|Z is the function whose domain is Z
and whose value for each z € Z is f(2); f| Z is called the restriction of f to Z,
and f'is called an extension of | Z. If Z C X, then the map ¢ | Z is called the
canonical injection of Z into X.
Compositions of maps are often depicted by mapping diagrams; for ex-
ample,

4

X y

1 0 ®)
h

z
meansthat f: X 5> Y,g: Y>> Z, h: X - Z,and h = g - f. Another example,

¥ —L ey

)

)

W—>2
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indicates that g « f = k - h. Diagrams showing the equality of compositions
of sequences of maps, such as (5) and (6), are called commutative diagrams.

Iff: X> Y, g: Yo X, and gf = ¢4, then g is a left inverse of f; if
JZ = ¢y, then g is a right inverse of f. If g is a left and right inverse of f, then it
is an inverse of f. (See Exercise 3.)

Theorem 1.1 Assume f: X — Y. Then

(1) fis injective iff it has a left inverse.

(ii) fis surjective iff it has a right inverse.
(iii) If f has a left inverse g and a right inverse h, then g = h.
(iv) fis bijective iff it has an inverse.

(v) Iff has an inverse it is unique and is denoted by f ",
(vi) If f has an inverse, then (f™')™! = f.
Proof: (i) If fhas a left inverse g: Y — X, then f(x,) = f(x,) implies that
8(f(x))) = g(f(x,)) and hence that x, = ¢4(x;) = (g - f)(x)) = g(f(x))) =
g(f(x,)) = (g - f)(x,) = ex(x,) = x,. Hence f is injective. Conversely, if f is
injective, then for each y € f(X) there is exactly one element in X, callit x, €
X, such that f(x,) = y: define g|f(X) by g(y) = x,. For any other z € ¥, let
g(2) = x,, some fixed element in X. Obviously (g « f)(x) = g(f(x)) = x = ¢4(x)
forallx € X, sogis a left inverse of f.

‘_’ f(x)

9

(i) If f: X - Y is surjective, then f(X) = Y. Let g: Y — X be defined as
follows: For each y € Y choose an x, € £ '({»}) and let g(y) = x,. Then

(f- 8)(y) = flg(y)) = flx,) =y = ty(y), i.e., f+ & = ¢y. Hence f has a right
inverse. Conversely, if g: ¥ — X is a right inverse of fand y € Y, then y =

w(¥) = (f « 8)(y) = flg(y)) and hence y € im f. Thus f'is surjective.



