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Preface

Like many textbooks, this book evolved from a set of lecture notes that
I wrote for a class. I first taught a class on population balances during
a sabbatical at the Center for Process Biotechnology (now the Center
for Microbial Biotechnology or CMB) at the Technical University of
Denmark and have since taught the class at both Louisiana State Uni-
versity and CMB, again, during a second sabbatical. Over the periods
that the class was taught I received many constructive ideas and sug-
gestions that have helped to make this a better book. These contribu-
tions came from students and colleagues, too many to list by name, but
all have my gratitude.

This book is intended for students and researchers from any disci-
pline in which models of cellular systems are of relevance, from chem-
ical engineering to medicine. However, when I taught this class in the
past the audience was primarily chemical engineering students, and
the book therefore contains many chemical engineering idioms and
concepts. I hope that I have succeeded in explaining these in sufficient
detail to make the material accessible to a wider range of students and
researchers. The requirements of the reader are calculus up to and
including ordinary differential equations and some exposure to simple
growth models such as the celebrated Monod model.

Much of the work to finish the class notes and turn them into book
form was done during a sabbatical at CMB, and I am grateful to the
Otto Mensted Foundation for financial support for this sabbatical stay.
Finally, I want to extend my gratitude to Karen Jones, my partner in
my private life, for careful reading of the manuscript and for the many
good suggestions she made along the way.

Martin A. Hjortse, Ph.D.



Nomenclature

Symbol Variable Units
a Cell age Time
Cp Product concentration Concentration
Cg Substrate concentration Concentration
Cgr Substrate feed concentration Concentration
D Dilution rate Time™!
flz, t) Normalized distribution of states Inverse units of z
with respect to cell state
parameter 2
h(z) A priori distribution of division Inverse units of z
states
m Cell mass Mass
M, nth moment of f(z, t)
N(t) Cell number concentration Inverse volume
p(z, 2) Distribution of birth states Inverse units of z
r Single-cell growth rate (Unit of the state parameter)/time
t Time Time
Wiz, t) Cell number concentration (Volume - units of z)~!
distribution of states
Y Yield (Rate of formation of z)/(rate of
substrate consumption)
z Arbitrary cell state parameter
I'(z) Division intensity Time™!
8(z) Dirac delta function
0(2) Death intensity Time™!
n Specific growth rate of a Time™!
population of cells
v Specific growth rate of a single Time™!
cell
D(2) Distribution of division states Inverse units of z

Xi
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Chapter

Introduction

This chapter aims to clarify the concept of population balance model or
population balance equation, terms that are used almost interchange-
ably in this book. This is followed by a short narrative of the strengths
and weaknesses of these models.

1.1 What Are Population Balance Models?

Population balance is not a well-defined concept in science and engi-
neering, but means slightly different things to different people. During
the fall of 2004, a Web search on the term “population balance model”
gave more than 1 million hits, and a casual perusal of some of the Web
pages obtained in this search makes clear this confusion of connota-
tions. In this book, population balance models will connote the equa-
tions or sets of equations that model the dynamics of the distribution
of states of a population of cells or particles.

Population balances are models describing how the number of
individuals in a population and their properties change with time and
with the conditions of growth. In engineering, population balances are
used to model not just populations of living cells, but also populations
of inanimate particles, such as the size and number of crystals in a
crystalizer or the size, number, and composition of droplets in an
aerosol.

Although an engineering concept, there is a population balance
notion that is known to most people and that is the population pyramid.
Age pyramids are histograms depicting the number of people in each of
a set of age classes. Often, these histograms are split into two parts, one
for males and one for females, and are placed with a common vertical
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Figure 1.1 Population pyramids for Burundi and Denmark, 2000. (Source: U.S. Census
Bureau.)

axis signifying age, and two horizontal axes, running in opposite
dirertions for males and females, indicating number of individuals in
each age class. This placement gives rise to a roughly triangular shape
reminiscent of a pyramid, thus the name. The age pyramids for Burundi
and Denmark for the year 2000 are shown in Fig. 1.1.

Without knowing anything about the mathematics of population
balance models, most people will be able to look at these two pyramids
and immediately conclude that

* The population of Burundi is increasing while the population of
Denmark is not, or if so, only very slowly compared to the population
of Burundi.

* Denmark experienced a baby boom after World War II while Burundi
did not.

* The average life span in Denmark is longer than the average life span
in Burundi.

The rate of population increase in Burundi can be inferred from the
large number of people in the younger age groups as compared to the
older groups, indicating a population with a large fraction of young
individuals. This trend could conceivably be explained by a high rate of
death for all of the age groups, but it is not a valid explanation in this
case, since natural death in humans occurs predominantly at older
ages. Instead, the large fraction of young people is a result of a high
birth rate causing each generation to be larger than the previous and
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thus the total population to increase with time. This trend turns out to
hold for microbial populations as well: the higher the specific growth
rate of the population, the larger the fraction of younger cells and vice
versa. The population pyramid for Denmark, on the other hand, shows
an approximately constant population size for age groups younger than
60. Only after this age does death cause a significant decrease in
population size with age.

The Danish population pyramid is at its widest between ages 25 to
54; the age distribution has a local maximum in this interval of ages.
This, of course, is a signature of the baby boom, the increase in birth
rate that occurred in most of the western world after World War II,
which was a period during which people postponed starting families.
Although the Danish population pyramid indicates a population that is
not changing rapidly in size, the baby boom hump shows that the age
distribution in the population is not at a steady state. The baby boom
subpopulation in the western world will, as time goes by, shift toward
older ages, resulting in a population with a high fraction of senior
citizens and giving rise to concerns about how society can cope with this
increase in retirees. This connection between a temporary increase in
birth rate and a local peak in the age distribution is also seen in the age
distribution of microbial cultures. When such a peak is formed, the
culture is said to be synchronized, or partially synchronized, and the
sharper the peak in the age distribution, the higher the degree of
synchrony is said to be.

The average age in Burundi and Denmark can be easily be calculated
from the values of their respective population pyramids. The average
age 1s simply the first moment of the age distribution, and the lower
average age for Burundi as compared to Denmark reflects both a
shorter life span and a more rapidly increasing population in Burundi.

Population balance models of the populations in Burundi and
Denmark will allow for quantitative predictions about the future of the
populations in the two countries rather than just the simple qualitative
statements above. For instance, models would allow one to predict or
estimate future population sizes in Burundi or the fraction of retirees
in Denmark, both estimates that are valuable for reaching political
decisions about how to manage future changes in the populations.
However, the focus of this book is not on models of human populations
but of models of cultures of cells, be they single-celled procaryotes,
eucaryotes, or even the cells that make up tissues.

Most growth models of cell cultures can be classified as either
structured or unstructured, and as distributed or segregated [94]. The
term “structured model” refers to a model where more than one variable
is used to specify the composition of the biophase. Typically, these
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variables are the chemical compounds of the biophase. To keep the
number of model variables manageable, models make frequent use of
pseudocomponents, functionally similar compounds that have been
lumped into groups such as proteins, various types of RNAs, and lipid
content. Unstructured models, on the other hand, characterize the
biophase by a single variable such as the amount of biomass.
Distributed models are models that make the simplifying assumption
that the cells in a culture form a single well-mixed biophase, while
segregated models are more realistic and take into account the fact that
the biological material is segregated into individual cells that are not
necessarily identical in composition. In segregated models, the
biophase is described by a distribution of cell states, a frequency
function that indicates the probability that a cell, picked at random, is
in a specified state. This specific state can be any measure of the cell
state: cell size, cell mass, cell age, DNA content, protein content, etc.
The state of a cell can even be specified by using multiple variables such
as DNA and protein content, in which case the distribution of states
becomes a multidimensional frequency function.

Distributed models can be either structured or unstructured. An
unstructured, distributed model consists of a balance on the biomass
coupled with mass balances on the media component, and these
balances form a set of coupled, ordinary differential equations. A
structured, distributed model also consists of coupled ordinary
differential equations, balances on the components in the biophase and
balances on components in the media—identical to the balances one
would write on any two-phase reactor.

Segregated models can be either structured or unstructured,
depending on how many parameters are used to describe the state of a
cell. They are usually much more complex than distributed models,
typically consisting of partial differential, integral equations for the
distribution of cell states, coupled to mass balances on the substrate
components. Segregated models are a type of population balance model,
but the concept of population balances encompasses many more
systems than just cell cultures.

The population balance models that are the topic of this book are
segregated models of microbial populations. They are not only age
distribution models, but also models of the size or mass distribution, or
multidimensional models involving several cell state parameters. As
alluded to earlier, these models share some of the features and issues
of models of human populations. To model either type of population, one
will want to know when reproduction or cell division occurs, at what
rate cells or individuals in different states die, the state (e.g., size or
mass) of newborn cells, and the growth rate of individual cells. Of
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course, for the age distribution problem, the last two issues are trivial;
newborn cells have age zero and the age growth rate is unity. When
other state parameters such as cell mass are used, it is more difficult
to say something about the rate of growth of individual cells or the
distribution of states of newborn cells.

1.2 The Distribution of States

The models of microbial populations that we will consider here will not
be of the discretized version that is exhibited by the human population
histogram in Fig. 1.1, but will assume that the state parameter (age,
mass, etc.) is a continuous variable, giving rise to distributions of states
that are usually smooth functions instead of the discontinuous bins that
the histogram represents. (Of course, a smooth distribution can always
be represented by a histogram if so desired.) The distributions of states
can be scaled several ways, either as a frequency function such that the
zeroth moment equals unity, or as a cell number distribution such that
the zeroth moment equals the cell number concentration. We will adopt
the nomenclature that f(-) indicates the normalized distribution of
states and W(-) the cell number concentration distribution of states.
Thus, if the state of a cell is given by z, then

f(z, t)dz = fraction of cells with state ze[z, z+dz]

at time ¢ and similarly

W(z, t)dz = cell number concentration of cells with state
zelz, z+dz]

The two distributions scale such that

/;f(z, Hdz=1

where the z subscript in the integral indicates that the integration is
over all possible cell states z. Similarly

‘/Z‘W(z, t)dz = N(t)

where N(?) is the cell number concentration at time ¢. Clearly,
W(z, t) = N()f(z, t)

and the equations that describe how these functions evolve with time
and under different growth conditions are the population balance
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models that we seek. The fact that these distributions indicate that the
number of individuals in a given group can be a fractional number does
not contradict the fact that in real populations the number of
individuals within a given group is always an integer because the
distributions should be thought of in a statistical sense. They represent
the probability that a cell chosen at random is in a given group or
interval of states. Also, in most practical applications, the number of
cells in a population is so huge that the difference between the true
discrete population and the continuum approximation represented by
th'e distribution of states becomes negligible.

Often one may want to find several different distributions of states
for the same population. For instance, one may want to know both the
distribution of cell mass and the distribution of cell age. Instead of solv-
ing for each distribution separately, one can, since a single state pa-
rameter is used, solve for either one and find the other by a variable
transformation. For instance, consider a case where the age distribu-
tion is known and where the mass distribution is desired. All we need
to know to carry out the transformation is the cell mass as a function
of cell age. Call this function m(a) and the inverse function a(m); then

Number of cells between a and a+da = f(a)da
Number of cells between m(a) and m(a+da) = f(m)dm

and thus

f(a)da = f(m)dm =
f(m)= fam) 4%, f(a) = f(m(a) L™

The distribution of states can be partially characterized by various
scalar quantities such as the zeroth moment mentioned above. In
general, the nth moment of f(z, ¢) is

/an(z, t)dz
M, () =/z”f(z, tydz=Vi—
‘ /W(z, t)dz

The first moment has a simple biological interpretation; it is the
mean or average z value of the cells in the population, e.g., the average
cell mass or cell size. The moments defined this way are mathemat-
ically important because an approximate distribution can often be
reconstructed from the moments. However, in terms of descriptive
value, the centered moments are preferred. These are defined as
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M, =/;(z—M1)”f(z, t)dz

and many of these have common names such as the second centered
moment or the variance a2,

ozzfz(z-Ml)Zf(z, t)ydz = My - M}

which describes how broad or uniform the distribution is. For a perfectly
synchronized distribution in which all cells are in the same cell state,
the variance equals zero. The asymmetry of the distribution is mea-
sured by the skewness defined as

3
M, - 3M{ M, + 2M;
(M, - M2)®'?

71 =/Z(z - M)3 f (2, t)dzlo® =

The reason for division by g2 is that it renders the skewness
dimensionless. If a distribution is symmetric, it has zero skewness; if it
has a tail at values greater than its maximum, it has positive skewness;
if the tail is at values less than the maximum, it has negative skewness.
Finally, the kurtosis is defined in terms of the fourth centered moment
as

M, AM, My + 6 MM, - 3M;!
- 2 2 4 -
Mg - 2MPM,+ M,

Yo :/;(z—M1)4f(z, t)dz[o* -3

The reason for the —3 term in the definition is that it results in the
normal distribution having a kurtosis of 0. The kurtosis defined above
is therefore sometimes called the kurtosis excess, as opposed to the
kurtosis proper, which is defined without the —3 term. The kurtosis is a
measure of the degree of peakedness of a distribution. If the distribution
is more concentrated around the mean than the normal distribution,
then the kurtosis is positive, otherwise it is negative.

1.3 The Age Population Balance

Derivation of the age population balance is particularly easy and will
be done first to illustrate the general concept of a particle balance. We
can obtain the equation by doing a cell number balance on a group of
cells with ages between b and ¢, where we assume 0 < b < ¢. The age
bracket that defines the cells is an example of a so-called control vol-
ume, the “volume” in state space over which a number balance, or any
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other kind of conservation balance for that matter, can be written. The
number of cells in the control volume is

ﬁW(a, t)da

This number changes with time, and the rate of change in the number
of cells inside the control volume is the time derivate of the integral:

| _of _[aw
Rate of change in cell number —&ﬁ Wi(a, t)da /; 5 da

The number of cells in the control volume changes through three
processes: Cells leave the group as they grow older than ¢, younger cells
enter the group as they grow older than b, and cells leave the group
because they divide. The rates at which cells enter and leave the group
by growth are W(b, t) and W(c, t), respectively. The rate at which cells
of age a divide is harder to account for, and we will need to define a
function, I'(a, t), such that I'(a, t) W(a, t) equals this rate. I' is called the
division intensity, and we shall return to this function later and discuss
it in more detail. Thus, the rate at which cells leave the control volume
through division equals the rate for cells of age a integrated over all the
control volume ages:

Rate of cell leaving by division = K I'(a, t)W(a, t)da

The rate of change of the number of cells in the group can now be
related to the rates at which cells enter and leave the group by a number
balance:

Rate of change in cell number =

rate of cells entering — rate of cells leaving

or, as an equation,
ﬂ W 1a=W, t)- Wi, 1) / Ia, fda

The cell balance is not particularly useful in this form, so we will
rewrite it by first writing the difference W(b, t) — W(c, t) as an integral,

/—d = - —da—/l"(a, t)W(a, t)da
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then collecting all the terms under a single integral sign,

A{%W +%‘7"’+ I'(a, ) Wia, t)} da=0

As the limits of the integral are arbitrary, the integrand itself must
be identically zero, giving the desired result:

W, W _

% oy - I'(a, t)W(a,t) (1.1)

Since this equation was obtained from a number balance on cells
inside a specified age bracket or control volume, this equation (as well
as other equations obtained by number balances) will be referred to as
a population balance equation (PBE). By themselves, population
balance equations do not present sufficient information to solve for the
distribution of states. They must first be supplied with side conditions
or boundary conditions, initial conditions, and typically equations for
the concentrations of growth-limiting nutrients in the medium, as well
as equations that relate these concentrations to the division intensity
and other kinetic functions in the population balance equation. We will
refer to the combination of the population balance equation and all its
side conditions and supporting equations as a population balance
model (PBM). The alternative term corpuscular' models has been
suggested [81], but the term has never caught on, while the term
segregated model is used in many biochemical engineering books for
PBMs of cell cultures [3, 10, 66].

1.4 Other PBMs

The term “population balance model” was firmly established as the
preferred term when a United Engineering Foundation conference in
Kona, Hawalii, in the year 2000 titled itself the Engineering Foundation
Conference on Population Balance Modeling and Applications, and
when, shortly after this conference, Professor Doraiswami Ramkrishna
published the first general textbook on population balances simply en-
titled Population Balances [74]. It is immediately obvious in looking
through this book or through the papers from the Kona conference [47]
that population balance models are not limited to populations of mi-
crobial cells. In fact, in engineering the term refers to any number
balance over a particulate system, and population balance models have
been formulated for aerosols, crystallizers, emulsions, soot formation,
polymerization kinetics, and granulation operations. Even networks

!Pertaining to, or composed of, corpuscles, or small particles.



