Heinz Hanfdmann

Local and Semi-Local

Bifurcations
in Hamiltonian
Dynamical Systems

Lecture Notes in Mathematics

1893

Results and Examples

@ Springer



Heinz HanBmann

LLocal and Semi-Local
Bifurcations

in Hamiltonian
Dynamical Systems

Results and Examples

@ Springer



Author

Heinz HanfBmann

Mathematisch Instituut
Universiteit Utrecht
Postbus 80010

3508 TA Utrecht

The Netherlands

Library of Congress Control Number: 2006931766

Mathematics Subject Classification (2000): 37J20, 37J40, 34C30, 34D30, 37C15,
37Go5. 37G10, 37J15, 37J35, 58K05, 58K 70, 70E20, 70H08, 70H33, 70K 30, 70K43

ISSN print edition: 0075-8434

ISSN electronic edition: 1617-9692

ISBN-10 3-540-38894-x Springer Berlin Heidelberg New York
ISBN-13 978-3-540-38894-4 Springer Berlin Heidelberg New York

DOI 10.1007/3-540-38894-X

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

¢ Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply.
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting by the author and SPi using a Springer IXTEX package

Cover design: WMXDesign GmbH, Heidelberg

Printed on acid-free paper SPIN: 11841708 VA41/3100/SPi 543210



Preface

Life is in color,
But black and white is more realistic.

Samuel Fuller

The present notes are devoted to the study of bifurcations of invariant
tori in Hamiltonian systems. Hamiltonian dynamical systems can be used
to model frictionless mechanics, in particular celestial mechanics. We are
concerned with the nearly integrable context, where Kolmogorov Arnol'd
Moser (IKAM) theory shows that most motions are quasi-periodic whence the
(invariant) closure is a torus. An interesting aspect is that we may encounter
torus bifurcations of high co-dimension in a single given Hamiltonian system.
Historically, bifurcation theory has first been developed for dissipative dy-
namical systems, where bifurcations occur only under variation of external
parameters.

Bifurcations of equilibria and periodic orbits

The structure of any dynamical system is organized by its invariant subsets,
the equilibria, periodic orbits, invariant tori and the stable and unstable man-
ifolds of all these. Invariant subsets form the framework of the dynamics, and
one is interested in the properties that are persistent under small perturba-
tions.

The most simple invariant subsets are equilibria, points that remain fixed
so that no motion takes place at all. Equilibria are isolated in generic sys-
tems, be that within the class of Hamiltonian systems or within the class of
all dynamical systems. In the latter case the dynamics is dissipative and an
equilibrium may attract all motion that starts in a (sufficiently small) neigh-
bourhood.

Such a dynamically stable equilibrium is also structurally stable in that
a small perturbation of the dynamical system does not lead to qualitative
changes. If we let the system depend on external parameters, then the equi-
librium may lose its dynamical stability under parameter variation or cease to
exist. A typical example is the Z,-symmetric pitchfork bifurcation where an



VIII Preface

attracting equilibrium loses its stability and gives rise to a pair of two attract-
ing equilibria. Other examples are the saddle-node and the Hopf bifurcation.
Such bifurcations have been studied extensively in the literature, cf. [129, 173]
and references therein.

The dynamics around equilibria in Hamiltonian systems can be more com-
plicated since it is not generic for a Hamiltonian system to have only hyper-
bolic equilibria. This also influences possible bifurcations, cf. [61, 43]. For
instance, in the Hamiltonian counterpart of the above pitchfork bifurcation it
is an elliptic (rather than attracting) equilibrium that loses its stability and
gives rise to a pair of two elliptic equilibria. In [254, 78] dynamically stable
equilibria are studied for which the nearby dynamics nevertheless changes
under variation of external parameters.

Periodic orbits form 1-parameter families in Hamiltonian systems, usually
parametrised by the value of the energy. In fact, where continuation with
respect ot the energy fails a bifurcation! takes place, while other bifurcations
are triggered by certain resonances between the Floquet multipliers. For more
details see [3, 38] and references therein, and also Chapter 3 of the present

notes.

Bifurcation from periodic orbits to invariant tori

In (generic) dissipative systems periodic orbits are isolated and one needs
again external parameters g to encounter bifurcations. One of these is the
periodic Hopf [154, 155] or Neimark Sacker [252, 14] bifurcation. Under para-
meter variation a periodic orbit loses stability as a pair of Floquet multipliers
passes at £ exp(ivT) through the unit circle, where 1" denotes the period. In
the supercritical case the stability is transferred to an invariant 2-torus that
bifurcates off from the periodic orbit, with two frequencies wy ~ 1/7 and
wo ~ 2mr coming from the internal and normal frequency of the periodic or-
bit. The subecritical case involves an unstable 2-torus with these frequencies
that shrinks down to the periodic orbit and results in a “hard” loss of stability.

The frequency vector w = (wp,ws) that in the above description is
rather naively attached to the merging invariant tori exemplifies the problems
brought by bifurcations to invariant tori. First of all we need non-resonance
conditions 27k/T + (v # 0 for all k € Z and ¢ € {1,2,3,4}. Where these
are violated one speaks of a strong resonance as the Floquet multipliers
+exp(ivT) € {£1, —% &£ 3\/§ +i} are (th order roots of unity, see [272, 173]
for more details. While excluding these low order resonances does lead to an
invariant 2-torus bifurcating off from the periodic orbit, the motion on that
torus need not be quasi-periodic.

For irrational rotation number w; /w2 the motion is indeed quasi-periodic
and fills the invariant torus densely. In case the quotient wy /ws is rational (but

' For generic Hamiltonian systems this is a periodic centre-saddle bifurcation.
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now with denominator ¢ > 5) we expect phase locking with a finite number of
periodic orbits with period = 7" and all other orbits on the torus heteroclinic
between two of these. The invariance (and smoothness) of the torus is guar-
anteed by normal hyperbolicity, an important property of dissipative systems
that does not have the same consequences in the Hamiltonian context.

In the present simple situation it suffices to require that the rotation num-
ber wy/wy on the invariant torus has non-zero derivative with respect to the
bifurcation parameter j. A more transparent approach is to consider the ro-
tation number as an additional external parameter and it is more convenient
to work with both w; and w» as (independent and thus two) additional para-
meters. In (ji.w)-space this yields the following description. The bifurcation
occurs as ji passes through the bifurcation value g = 0 and the dynamics on
the torus is quasi-periodic except where w = (wpq.wop) is a multiple wy € R
of an integer vector (q.p) € Z* and thus resonant.

Torus bifurcations in dissipative systems

Bifurcations involving invariant n-tori may similarly be described using exter-
nal parameters (1, w) € R? x R™. An additional complication is that the flow
on an n-torus may be chaotic for n > 3 and that the torus may be destroyed
altogether in the absence of normal hyperbolicity. One therefore excludes res-
onances kjwy + ... 4+ k,w, = 0 by means of Diophantine conditions?

/\ X]\.Iw'l J awe P knLu'u' Z 'L-I|T (01)
keZ"\{0}

where v >0, 7>n—1and |[k| =k + ...+ ky.

A first result along these lines concerns n-tori that bifurcate off from equi-
libria, cf. [23] and references therein. Here d = n and the parameters y are used
to let n pairs pi; + iw; pass through the origin g = 0 in p-space. This yields
quasi-periodic n-tori for w in the nowhere dense but measure-theoretically
large subset of R™ defined by (0.1), and also quasi-periodic m-tori where only
m < n pairs ji; & iw; have crossed the imaginary axis.

Furthermore there are invariant tori of dimension I > n. In the simplest
case n = 2 this has been proved in [32], establishing a quasi-periodic flow on
the resulting 3-tori. The procedure in [24] does yield [-tori for general n, but
no information on the flow on these tori.

Normal hyperbolicity yields invariant (n + 1)-tori bifurcating off from a
family of invariant n-tori in [68, 260, 119]. At the bifurcation the invariant
n-tori momentarily lose hyperbolicity and the Diophantine conditions (0.1)
are needed. As shown in [33, 34] one can similarly use Diophantine conditions

2 The /\ at the beginning signifies that the inequalities that follow have to hold

true for all non-zero integer vectors.
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involving the normal frequency at the bifurcation to establish a quasi-periodic
flow on the (n+1)-tori. The “gaps” left open where the frequency vector is too
well approximated by a resonance are then filled by normal hyperbolicity. On
this measure-theoretically small but open and dense collection of (n + 1)-tori
the flow remains unspecified. See also [55, 77] for more details.

Notably, these results require the bifurcating n-tori to be in Floquet form,
with normal linearization independent of the position on the torus. The skew
Hopf bifurcation where this condition is violated is a generic torus bifurcation
that has no counterpart for periodic orbits. As shown in [282, 60, 62, 273] one
has also in this case quasi-periodic (n+ 1)-tori bifurcating off from n-tori. The
gaps left by the necessary Diophantine conditions are again filled by normal
hyperbolicity, but to a lesser extent.

From the period doubling bifurcation [223, 173] of periodic orbits one in-
herits the frequency halving bifurcation of quasi-periodic tori. Under variation
of the external parameter g an invariant n-torus loses stability as a Floquet
multiplier passes at —1 through the unit circle. In the supercritical case the
stability is transferred to another n-torus that bifurcates off from the initial
family of n-tori with the first® frequency divided by 2. The subecritical case
involves an unstable n-torus with one frequency halved that meets the initial
family and results in a “hard” loss of stability.

This situation is clarified in [34]. As g passes through the bifurcation
value g = 0 a frequency-halving bifurcation takes place for the Diophan-
tine tori satisfying (0.1). By means of normal hyperbolicity the gaps around
resonances kjwy + ... + k,w, = 0 are filled by invariant tori on which the
flow need not be conditionally periodic. This leaves small “bubbles” in the
complement of Diophantine tori at and near the bifurcation value where nor-
mal hyperbolicity is too weak to enforce invariant tori. In [186, 187] this
scenario has been obtained along a subordinate curve in the 2-parameter un-
folding of a periodic orbit having simultaneously Floquet multipliers —1 and
texp(ivT) ¢ {+1,—3 + 33, %i}.

The quasi-periodic saddle-node bifurcation is studied in [65] where it ap-
pears subordinate to a periodic orbit undergoing a degenerate periodic Hopf
bifurcation. The general theory is (again) given in [34], where it appears
as the most difficult of the three quasi-periodic bifurcations inherited from
generic bifurcations of periodic orbits. For an extension to the degenerate
case see [284, 285].

Bifurcations in Hamiltonian systems

Compared to the above rich theory of torus bifurcations in dissipative dynam-
ical systems, there are few results on conservative systems prior to [139] that
[ am aware of. In [41, 42, 32] invariant tori of dimension 2 and 3 are estab-
lished in the universal 1-parameter unfolding of a volume-preserving vector

* Here a convenient choice of a basis on T" is assumed.
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field with an equilibrium having eigenvalues 0, i or fiw;. +iws, respectively.
In the Hamiltonian case the existence of invariant tori near an elliptic equilib-
rium is due to the excitation of normal modes and generalizes the Lyapunov
centre theorem, see [55] and references therein.

This lack of a bifurcation theory for invariant tori in Hamiltonian systems
is all the more surprising as no external parameters are necessary. Indeed,
every angular variable on a torus has a conjugate action variable whence n-
tori form n-parameter families. The present notes aim to fill this gap in the
literature.

In the “integrable” case, when there are sufficiently many symmetries, the
situation can be reduced to bifurcations of (relative) equilibria. For this reason
we develop the latter theory in a systematic way. From the various families of
equilibria one can easily reconstruct the bifurcation scenario of invariant tori
in an integrable Hamiltonian system.

While integrable systems have received a lot of attention — nét to the least
because their dynamics can be completely understood - it is highly exceptional
for a Hamiltonian system to be integrable. Still. one often takes an integrable
system as starting point and studies Hamiltonian perturbations away from
integrability. Also if explicitly given a non-integrable Hamiltonian system,
one of the few methods available is to look for an integrable approximation,
e.g. given by normalization, and to consider the former as a perturbation of
the latter. By a dictum of Poincaré the problem of studying the effects of
small Hamiltonian perturbations of an integrable system is the fundamental
problem of dynamics.

KAM theory is a powerful instrument for the investigation of this problem.
It states that most! of the quasi-periodic motions constituting the integrable
dynamics survive the perturbation, provided that this perturbation is suf-
ficiently (and this means very) small. In a more geometric language these
motions correspond to invariant tori. Under Kolmogorov's non-degeneracy
condition one may consider the (internal) frequencies as parameters, and the
Diophantine conditions (0.1) bounding the latter away from resonances lead
to the Cantor families of tori one is confronted with in the perturbed system.

In its first formulation KAM theory addressed the “maximal” tori, and
only later generalizations were formulated and proven for families of invariant
tori that derive from hyperbolic and/or elliptic equilibria. For an overview
over this still active research area see [55]. The present notes further general-
ize these results to families of invariant tori that lose (or gain) hyperbolicity
during a bifurcation. Such bifurcations are governed by the nonlinear terms
of the vector field. In this way singularity theory both governs the bifurca-
tion scenario and helps deciding how these nonlinear terms are dealt with
during the KAM-iteration procedure. As a result, the various smooth families
" The relative measure of those parametrising internal frequencies for which the

torus is destroyed vanishes as the size of the perturbation tends to zero.
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of invariant tori of the integrable system get replaced by Cantor families of
invariant tori organizing the perturbed dynamics.
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Introduction

Dynamical systems describe the time evolution of the various states z € P in
a given state space. When this description includes both (the complete) past
and future this leads to a group action'

¢ : RxP — P
(t.2) — @(2)

of the time axis R on P, i.e. ¢y = id (the present) and ¢, o p; = @4y for all
times 5.t € R. Immediate consequences are ¢, 0 @, = @ 0 @ and p; ' = o _y.
In case ¢ is differentiable one can define the vector field

d
X(z) = (TIQPI(Z)

t=0

on P and if e.g. P is a differentiable manifold then ¢ can be reconstructed
from X as its flow. Note that

2= X(z2) (1.1)

defines an autonomous ordinary differential equation on P.

Given a state z € P the set {p(z2) | t € R} is called the orbit of z.
Particularly simple orbits are equilibria, ¢¢(z) = z for all t € R, and periodic
orbits which satisfy pp(z) = 2 for some period T > 0 and hence @i yp(z) =
@1 (2) for all t € R. All other orbits define injective immersions t — ¢;(z) of
R in P. By definition unions of orbits form sets M C P that are invariant
under ¢, and if M is a differentiable manifold we call A an invariant manifold.

A complete understanding of a dynamical system ¢ is equivalent to finding
(and understanding) all solutions of (1.1) whence one often concentrates on the
long time behaviour as t — +50. One approach is to determine all attractors?

Technical terms are explained in a glossary preceeding the references.

2 . . . . . .

© Since there are no attractors in Hamiltonian dynamical systems we do not give a
formal definition.
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in P. compact invariant subsets A satisfying ¢,(z) ‘== A for all z near A,
that are minimal with this property. Such attractors can be equilibria, periodic
orbits, invariant manifolds. or even more general invariant sets. If 4 is an
invariant manifold without equilibrium, then the Euler characteristic of A
vanishes and the simplest such manifolds are the n-tori T, submanifolds of P
that are diffeomorphic to T" = R"/7n. Where we speak of n-tori we always
assume n > 2 in these notes.

The flow ¢ on a torus T is parallel or conditionally periodic if there is a
elobal chart

T — T

Z s xr

and a frequency vector w € R™ such that?

/\ /\ er(r) = & + wt . .

xeTn teR

In case there are no resonances (k,w) = 0, k € Z" every orbit on T is dense. If
there are n—1 independent resonances then w is a multiple of an integer vector
and all orbits on T are periodic. For m < n — 2 independent resonances the
motion is quasi-periodic and spins densely around invariant (n —m)-tori into
which T decomposes. The flow on a given invariant torus may be much more
complicated, this is often accompanied by a loss of differentiability. However,
if the flow is equivariant with respect to the T"-action x +— x + £ then all
motions are necessarily conditionally periodic. Our starting point is therefore
a family of tori carrying parallel flow, and we hope for persistence under
small perturbations for the measure-theoretically large subfamily where the
[requency vector satisfies a strong non-resonance condition.

Considering the long time behaviour for { — —oc attractors are replaced by
repellors and more generally one is interested in “minimal” invariant sets Af.
Where the dynamics on M itself is understood — for equilibria, periodic orbits
and invariant tori with conditionally periodic low — one concentrates on the
dynamics nearby. Equilibria and periodic orbits are (under quite weak condi-
tions) structurally stable with respect to small perturbations of the dynamical
svstem, while invariant tori and more complicated, strange invariant sets may
disintegrate. This makes it preferable to study parametrised families of such

imvariant sets.

In applications the equations of motion are known only to finite precision of
the coefficients. Giving these coeflicients the interpretation of parameters leads
to a whole family of dynamical systems. Under variation of the parameters
the invariant sets may then bifurcate. Bifurcations of equilibria are fairly well
understood, at least for low co-dimension, cf. [129, 173] and references therein.
Since these bifurcations concern a small neighbourhood of the equilibrium, we
speak of local bifurcations. Using a Poincaré mapping, periodic orbits can be

" We use the same letter ¢ for the flow in the chart as well.
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studied as fixed points of a discrete dynamical system. In addition to the
analogues of bifurcations of equilibria, periodic orbits may undergo period
doubling bifurcations, cf. [223, 58].

For a family of invariant n-tori with conditionally periodic flow the fre-
quency vector w varies in general with the parameter; let us therefore now
consider w € R" itself as the parameter. Clearly both the resonant and the
non-resonant tori are dense in the family. Under an arbitrary small pertur-
bation (breaking the T"-symmetry that forces the toral flows to be condi-
tionally periodic) the situation changes drastically. Using KAM-techniques
one can formulate conditions under which most invariant tori survive the
perturbation, together with their quasi-periodic flow; the families of tori are
parametrised over a Cantor set of large n-dimensional (Hausdorff)-measure,
see [159, 56. 55]). Within the gaps of the Cantor set completely new dynamical
phenomena emerge; the dynamics on the torus may cease to be conditionally
periodic! even in case there are circumstances like normal hyperbolicity that
force the torus to persist. Note that the union of the gaps of a Cantor set
is open and dense in R". This is an exemplary instance of coexisting com-
plementary sets, one of which is measure-theoretically large and the other
topologically large, cf. [231].

It turns out that the bifurcations of equilibria and periodic orbits have
quasi-periodic counterparts, see [34, 284] and references therein. In the inte-
grable case where the perturbation respects the T"-action this is an immediate
consequence of the behaviour of the reduced system obtained after reducing
the torus symmetry. In the nearly integrable case where the torus symmetry
is broken by a small perturbation one can use KANM theory to show that the
bifurcation persists on Cantor sets. Notably the bifurcating torus has to be in
Floquet form. In the same way the higher topological complexity of periodic
orbits leads to period doubling bifurcations, tori that are not in Floquet form
can bifurcate in a skew Hopf bifurcation, see [282, 60].

Bifurcations of invariant tori have a semi-local character, they concern a
neighbourhood of the invariant torus which need not be confined to a small
region of P. Exceptions are bifurcations subordinate to local bifurcations and
these were in fact the motivating examples for the above results. In contrast,
global bifurcations lead to new interactions of different parts of P not present
before or after the bifurcation. Examples are connection bifurcations involving
heteroclinic orbits (these also exist subordinate to local or semi-local bifurca-
tions).

The quasi-periodic persistence results in [159, 56, 55] are formulated and
proven in terms of Lie algebras of vector fields and this allowed for a general-
ization to volume-preserving, Hamiltonian and reversible dynamical systems.

" For instance, if w € wy - Z" only finitely many periodic orbits are expected to
survive and the perturbed flow may consist of asymptotic motions between these.
The structural stability of surviving periodic orbits is in turn the reason why a
simple resonant frequency vector opens a whole gap of the Cantor set.
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see also [216]. We will henceforth speak of dissipative systems when there is
no such structure preserved. A dynamical system is Hamiltonian if the vector
ficlds derives® from a single “Hamiltonian™ function by means of a Poisson
structure, a bilinear and alternating composition on A C C(P) that satis-
fies the Jacobi identity and Leibniz’ rule. An important feature of integrable
Hamiltonian systems is that the torus symmetry yields conjugate actions by
Noether’s theorem. Accordingly, invariant n-tori in integrable Hamiltonian
systems with d degrees of freedom, d > n, occur as “intrinsic” n-parameter
families, without the need for external parameters.

In particular. periodic orbits form l-parameter families, or 2-dimensional
cvlinders (while equilibria remain in general as isolated as in the dissipative
case). Thus, periodic orbits in (single) integrable Hamiltonian systems may
undergo co-dimension one bifurcations, without the need of an external para-
meter. The ensuing possibilities were analysed in [205, 207], see also [208, 38,
232, 227, 228]. This yields transparent explanations for commorn phenomena
like the gyroscopic stabilization of a sleeping top, cf. [13, 84, 81, 147].

Interestingly, results on bifurcations of invariant n-tori (which form n-
parameter families in a Hamiltonian system) were first derived in the dis-
sipative context (where external parameters are needed), see again [34] and
references therein. Our aim is to detail the Hamiltonian part of the theory,
extending the results in [139, 50] to more general bifurcations. At the same
time we seize the occasion to put the well-known results on Hamiltonian bi-
furcations of equilibria, which are scattered throughout the literature, into a
systematic framework. See also [75, 76, 45, 44] for recent progress concerning
torus bifurcations in the reversible context.

1.1 Hamiltonian systems

A Hamiltonian system is defined by a Hamiltonian function on a phase space.
The latter is a svmplectic manifold, or, more generally a Poisson space, where
the Hamiltonian H determines the vector field

Xy : 2 = {z,H} .

If all solutions of Xz exist for all times, the flow o is a group action

ol - RxP — P

(h2) = oll(2) (1.2)

on the phase space P — in case there are orbits that leave P in finite time
(1.2) is only a local group action.

Despite this simple construction where a single real valued function defines
a whole vector field, the study of Hamiltonian systems is a highly non-trivial

? Similar to gradient vector fields defined by means of a Riemannian structure.
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1.1 Hamiltonian systems

task. The first systems that were successfully treated were integrable and the
study of Hamiltonian systems still starts with the search for the integrals of
motion. Since {H, H} = 0 the Hamiltonian is always® an integral of motion,
whence all systems with one degree of freedom are integrable.

However, already in two degrees of freedom integrable systems are the ex-
ception rather than the rule, cf. 239, 117, 26]. This led to the so-called ergodic
hypothesis that the flow of a Hamiltonian system is “in general” ergodic on
the energy shell. That this hypothesis does not hold for generic Hamiltonian
systems, see [191], is one of the consequences of KAM theory.

KAM theory deals with small perturbations of integrable systems and may
in fact be thought of as a theory on the integrable systems themselves. Indeed,
in applications the special circumstances that render a Hamiltonian system in-
tegrable may not be satisfied with absolute precision and only properties that
remain valid under the ensuing small perturbations have physical relevance.

An integrable Hamiltonian system with, say, compact energy shells gives
the phase space P the structure of a ramified torus bundle. The regular fibres
of this bundle are the maximal invariant tori of the system. The singular fibres
define a whole hierarchy of lower dimensional tori. in case of (dynamically)
unstable tori together with their (un)stable manifolds. In this way there are
two types of “least degenerate” singular fibres: the elliptic tori with one normal
frequency and the hyperbolic tori T with stable and unstable manifolds of the
form T xR. These two types of singular fibres determine the distribution of the
regular fibres. Different families of maximal tori are separated by (un)stable
manifolds of hyperbolic tori and may shrink down to elliptic tori.

On the next level of the hierarchy of singular fibres of the ramified torus
bundle we can distinguish four or five different types. Lowering the dimension
of the torus once more we are led to elliptic tori with two normal frequencies,
to hypo-elliptic tori and to hyperbolic tori with four Floquet exponents. For
these latter we might want to distinguish between the focus-focus case of a
quartet £R 13 of complex exponents and the saddle-saddle case of two pairs
of real exponents. This decision would relegate hyperbolic tori with a double
pair of real exponents to the next level of the hierarchy of singular fibres. We
can do the same with elliptic tori with two resonant normal frequencies. Where
the two normal frequencies are in 1:—1 resonance, the torus may undergo
a quasi-periodic Hamiltonian Hopf bifurcation and we always relegate these
elliptic tori to the third level of the hierarchy of singular fibres of the ramified
torus bundle.

The last type of second level singular fibres consists of invariant tori (and
their (un)stable manifolds) of the same dimension as the first level tori, but
with parabolic normal behaviour. Such tori may for instance undergo a quasi-
periodic centre-saddle bifurcation. We see that the kth level singular fibres
determine the distribution of the (k—1)th level singular fibres (where we could
abuse language and address the regular fibres as Oth level singular fibres).

Y Our Hamiltonians are autonomous, there is no explicit time dependence.



