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PREFACE

This book describes the finite element method and its application to a large class of
nonlinear problems in structural and continuum mechanics. Special emphasis is
given to the solution of problems in solid mechanics, but the general theory and
methods of formulation are sufficiently general to be applied to nonlinear problems
in, for example, fluid mechanics, electromagnetism, and partial differential
equations. Various numerical methods for the solution of large systems of non-
linear equations are also examined.

My interest in the numerical analysis of nonlinear continua grew from a
combination of a long interest in nonlinear mechanics, an appreciation of the great
potential of modern digital computers for solving nonlinear problems, and a
realization that much of the practical value of modern nonlinear theories of struc-
tural and material behavior will ultimately depend upon the availability of means
to apply them to specific practical problems. Some years ago, I began to investigate
the feasibility of applying the finite element method to the analysis of finite de-
formations of elastic solids. The surprising success of these early investigations,
some of which form the basis for portions of this book, encouraged me to consider
expanding the scope to nonlinear continua in general. In subsequent years, I
developed and taught a graduate course on finite element applications in nonlinear
mechanics at The University of Alabama in Huntsville, in which I attempted to
draw together both the fundamentals of continuum mechanics and modern methods
of numerical analysis. When these two subjects are brought together, each acquires
new meaning and significance. The nonlinear field theories of mechanics then
become valuable not only because they provide elegant generalizations of the
classical theories, but also because, with the aid of electronic computing techniques,
they provide a source for obtaining quantitative information on actual nonlinear
phenomena encountered in nature. The finite element concept, with its simplicity
and generality, provides the necessary ingredient for bringing these diverse subjects
together in a manner which, in retrospect, may appear far more natural than many
of the classical treatments of applied mechanics.

In selecting the topics to be covered in this book, it has not been my intention
to provide an exhaustive collection of solutions to all kinds of nonlinear structural
problems. Rather, the purpose here is to describe a general and physically ap-
pealing method for obtaining discrete models of continuous media, and to present a
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xiv PREFACE

self-contained account of the application of this method to the analysis of rep-
resentative nonlinear problems in solid mechanics. Once the basic notations are
digested, applications to numerous nonlinear problems not examined herein should
be straightforward.

So as to make the book self-contained, Chapter I contains an introductory
discussion of the general concept of finite elements along with summary discussions
of the kinematics of continuous media, the concept of stress, and the fundamental
principles of conservation of mass and balance of momentum. Chapter II con-
tains an account of the general theory of finite elements. Here the topological
properties of finite element models of general fields are presented in forms valid for
spaces of any finite dimension. Various types of finite element models are dis-
cussed as well as convergence criteria, and applications to linear and nonlinear
differential equations, wave phenomena, and rarefied gas dynamics. This chapter
also contains a detailed discussion of conjugate subspaces and the theory of con-
jugate approximations. Chapter III deals with the mechanics of a typical finite
element of a continuous media. It begins with a discussion of appropriate thermo-
dynamical concepts and principles, which is followed by derivations of local and
global forms of the principle of conservation of energy for a continuum. These
principles are used in conjunction with the theory developed in Chapter II to derive
general kinematical equations and equations of motion and heat conduction for a
finite element of arbitrary continuous media. A brief survey of the theory of
constitutive equations is also included, and forms of constitutive equations cast in
terms of discrete models of displacement and temperature fields are presented. In
Chapter IV, applications of the finite element method to the analysis of nonlinear
elasticity problems are presented. The chapter begins with an account of the theory
of finite elastic deformations. Then nonlinear stiffness relations for elastic solids
are derived, and solutions to a number of problems are presented. These include
the problems of finite deformations of incompressible solids of revolution, stretching
and inflation of elastic membranes, and finite plane strain of incompressible elastic
solids. Also included in this chapter is a survey of various methods for the solution
of large systems of nonlinear equations. Chapter V is devoted to inelastic behavior,
with special emphasis on thermomechanically simple materials and materials with
memory. General equations of motion and heat conduction for finite elements of
such materials are derived. A number of applications of these equations to selected

“cblems are examined, including problems in linear and nonlinear coupled thermo-
er=sticity and nonlinear coupled thermoviscoelasticity.

I have discovered that writing a book is a nonlinear problem, the solution
of which requires many iterations. ~Since the present form of this work varied very
little in the last few iterations, I present it with the hope that it provides an approxi-
mate solution to the problem at hand. Nonlinear applied mechanics, however, is
still in its infancy and is growing more rapidly with each passing day. Thus, the
sequence is far from having converged. If this book provides a starting point for
further iterations, it will have served a purpose for which it was intended.

I am grateful for the encouragement received from a number of colleagues
and students during the preparation of this book. Of particular benefit were the
comments and suggestions of Professors H. J. Brauchli and G. Aguirre-Ramirez.
My discussions of related topics with Professors T. J. Chung and G. A. Wempner
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were also rewarding. Early versions of certain chapters of this book were dis-
tributed to students, and I sincerely appreciate their assistance and encouragement;
among them, I am especially grateful to Messrs. J. E. Key, D. R. Bhandari, W. H.
Armstrong, T. Sato, J. W. Poe, and D. A. Kross. For portions of my research
which led to some of the ideas discussed in this book, I owe thanks to the support
of the National Aeronautics and Space Administration and the U.S. Air Force
Office of Scientific Research.

For their patience and diligency in keeping track of the multitude of sub-
scripts, superscripts, and mathematical symbols in my manuscript, the staff at
McGraw-Hill, particularly Jack Maisel, have my sincere thanks. It is also a
pleasure to acknowledge the assistance of Mrs. D. Wigent, who, with enthusiasm
and good humor, did an outstanding job of typing the entire manuscript.

Last, but far from least, I thank the one to whom this book is dedicated; for
her continued encouragement, assistance in the proofreading and many personal
sacrifices to help me finish this work, I shall always be grateful.

J. T. ODEN
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I
Preliminary Discussions

1 INTRODUCTION

During the first half of the twentieth century, much of the literature on solid
and structural mechanics was concerned with applications of long-standing
linear theories to various boundary-value problems. There were notable
exceptions, of course, such as the work which led to the rebirth and develop-
ment of classical plasticity and viscoelasticity, the scattered attempts, some
partially successful, at developing unified theories of material behavior, and
the large number of studies of geometric nonlinearities by investigators who
“retained nonlinear terms.” To most of the engineering and scientific
community, however, practical applications of solid mechanics meant the
solution of linear problems.

The reason for this i easily understood, for the behavior of the
majority of practical structures in the past could be adequately described by
linear theories. The deformations of most structures under working loads,
for example, were often scarcely detectable with the unaided eye, and for

1



2 FINITE ELEMENTS OF NONLINEAR CONTINUA

small deformations and steady uniform temperatures, the constitutive
equations for such common materials as steel and aluminum can be treated
as linear, without appreciable error.

This situation has drastically changed. Since 1950, many new
materials have been introduced whose response cannot be described by
classical linear theories. The thermoviscoelastic response of solid pro-
pellants, the postbuckling behavior of flexible structures, the use of highly
deformable inflatable structures, and the nonlinear behavior of polymers and
synthetic rubbers are only a few of the new problem areas that have encouraged
the interest in nonlinear solid mechanics in recent times. The theory of
elasticity has since been cast in general form, new nonlinear theories of
viscoelasticity and thermoviscoelasticity have been proposed, and guiding
principles for deriving constitutive equations for nonlinear materials are now
generally accepted. The theme of modern research into nonlinear material
behavior has been generality, and several theories have been proposed which
span the gamut from elastic solids to thermoviscous fluids.

In spite of the advances in nonlinear theories of structural and material
behavior, very little quantitative information is available to those who
encounter nonlinear phenomena in practical applications. Nonlinear
theories lead to nonlinear equations, which immediately render classical
methods of analysis inapplicable. In all the work published on nonlinear
behavior, only a handful of exact solutions to specific problems can be found;
and these, without exception, deal with bodies of the most simple geometric
shapes and boundary conditions. Often a ‘“‘semi-inverse method” is
employed, in which the shape of the deformed body is assumed to be known
in advance (a situation that one seldom is so fortunate as to encounter
in practice), and even in these cases numerical techniques must often be
introduced in the final steps of the solution in order to obtain quantitative
results.

This scarcity of quantitative information is, in some respects, quite
ironic, for concurrent with the recent progress in nonlinear solid mechanics
has been the development of the most powerful device for obtaining quanti-
tative data that man has ever known—the digital computer. But, on the
one hand, followers of the computational sciences have devoted full attention
to new fields such as cybernetics and nonlinear programming, while, on the
other hand, most researchers in continuum mechanics have been attracted
to the purely theoretical aspects of the subject. In the middle ground lies a
fertile and potentially important field: numerical analysis of nonlinear
continua. It represents a marriage of modern theories of continuous media
and modern methods of numerical analysis, so that, with the aid of electronic
computation, quantitative information on the nonlinear behavior of solids
and structures can be obtained. A systematic study of a portion of this
middle ground is the subject of this book.
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2 THE FINITE-ELEMENT CONCEPT

One must often resort to numerical procedures in order to obtain quantitative
solutions to nonlinear problems in continuum mechanics. However,
regardless of the initial assumptions and the methods used to formulate a
problem, if numerical methods are employed in evaluating the results, the
continuum is, in effect, approximated by a discrete model in the solution
process. This observation suggests a logical alternative to the classical
approach, namely, represent the continuum by a discrete model at the onset.
Then further idealization in either the formulation or the solution may not
be necessary. One such approach, based on the idea of piecewise approxi-
mating continuous fields, is referred to as the finite-element method. Its
simplicity and generality make it an attractive candidate for applications to a
wide range of nonlinear problems.

Classically, the analysis of continuous systems often began with
investigations of the properties of small differential elements of the continuum
under investigation. Relationships were established among mean values of
various quantities associated with the infinitesimal elements, and partial
differential equations or integral equations governing the behavior of the
entire domain were obtained by allowing the dimensions of the elements to
approach zero as the number of elements became infinitely large.

In contrast to this classical approach, the finite-element method begins
with investigations of the properties of elements of finite dimensions. The
equations describing the continuum may be employed in order to arrive at
the properties of these elements, but the dimensions of the elements remain
finite in the analysis, integrations are replaced by finite summations, and the
partial differential equations of the continuous media are replaced, for
example, by systems of algebraic or ordinary differential equations. The
continuum with infinitely many degrees of freedom is thus represented by a
discrete model which has finite degrees of freedom. Moreover, if certain
completeness conditions are satisfied, then, as the number of finite elements is
increased and their dimensions are decreased, the behavior of the discrete
system converges to that of the continuous system. A significant feature of
this procedure is that, in principle, it is applicable to the analysis of finite
deformations of materially nonlinear, anisotropic, nonhomogeneous bodies
of any geometrical shape with arbitrary boundary conditions.

2.1 HISTORICAL COMMENT

The idea of representing continuous functions by piecewise approximations
is hardly a new one. Rudiments of the ideas of interpolation were supposedly
used in ancient Babylonia and Egypt and, hence, preceded the calculus by
over two thousand years. Much later, early Oriental mathematicians sought
to evaluate the magical number 7 by determining the approximate area of the
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unit circle. This they accomplished to accuracies of almost forty significant
figures by representing the circle as a collection of a large but finite number
of rectangular or polygonal areas, the sum of which was taken as the area of
the circle. It was left to Newton and Leibnitz to introduce the ideas of
calculus, which have since made possible the formulation of most of the
problems of mathematical physics in terms of partial differential and integral
equations. Of course, the frequent failure of attempts to apply classical
analytical methods to obtain solutions to many of these equations, plus the
advent of the digital computer, has led an increasing number of investigators
of modern times to consider approximate methods of analysis. It is inter-
esting to note, however, that in many cases these investigators may un-
knowingly resort to concepts more primitive than those used to obtain the
equations they wish to solve.

The practice of representing a structural system by a collection of
discrete elements dates back to the early days of aircraft structural analysis,
when wings and fuselages, for example, were treated as assemblages of
stringers, skins, and shear panels. By representing a plane elastic solid as a
collection of discrete elements composed of bars and beams, Hennikoff
[1941] introduced his “framework method,”” a forerunner to the develop-
ment of general discrete methods of structural mechanics. Topological
properties of certain types of discrete systems were examined by Kron
[1939]f, who developed systematic procedures for analyzing complex
electrical networks and structural systems. Courant [1943]] presented an
approximate solution to the St. Venant torsion problem in which he approxi-
mated the warping function linearly in each of an assemblage of triangular
elements and proceeded to formulate the problem using the principle of
minimum potential energy. Courant’s piecewise application of the Ritz
meihod involves all the basic concepts of the procedure now known as the
finite-element method. Similar ideas were used later by Polya [1952]. The
hypercircle method, presented in 1947 by Prager and Synge [1947] and dis-
cussed at length by Synge [1957]§, can be easily adapted to finite-element
applications, and it provided further insight into the approximate solution
of certain boundary-value problems in mathematical physics. In 1954,
Argyris and his collaboratorsY began a series of papers in which they
developed extensively certain generalizations of the linear theory of structures
and presented procedures for analyzing complicated, discrete structural
configurations in forms easily adapted to the digital computer.

T See also, for example, Kron [1944a, 1944b, 1953, 1954, 1955].

} See also Courant, Fredrichs, and Lewy [1928].

§ Synge [1957] speaks of linear interpolation over triangulated regions; his use of *“‘poly-
hedral graphs’ and “‘pyramid functions” is clearly in the spirit of the finite-element method.
9 Argyris [1954, 1955, 1956, 1957], Argyris and Kelsey [1956, 1959, 1960, 1961, 1963],
Argyris, Kelsey, and Kamel [1964].



