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Preface

The need for ever faster computers has not ceased since the beginning of the computer
era. Every new application seems to push existing computers to their limit. So far,
computer manufacturers have kept up with the demand admirably well. In 1948, the
electronic components used to build computers could switch from one state to
another about 10,000 times every second. The switching time of this year’s compo-
nents is approximately 1/10,000,000,000th of a second. These figures mean that the
number of operations a computer can do in one second has doubled, roughly every
two years, over the past forty years. This is very impressive, but how long can it last? It
is generally believed that the trend will remain until the end of this century. It may
even be possible to maintain it a little longer by using optically based or even
biologically based components. What happens after that?

If the current and contemplated applications of computers are any indication,
our requirements in terms of computing speed will continue, at least at the same rate
as in the past, well beyond the year 2000. Already, computers faster than any available
today are needed to perform the enormous number of calculations involved in
developing cures to mysterious diseases. They are essential to applications where the
human ability to recognize complex visual and auditory patterns is to be simulated in
real time. And they are indispensable if we are to realize many of humanity’s dreams,
ranging from reliable long-term weather forecasting to interplanetary travel and outer
space exploration. It appears now that parallel processing is the way to achieve these
desired computing speeds.

The overwhelming majority of computers in existence today, from the simplest
to the most powerful, are conceptually very similar to one another. Their architecture
and mode of operation follow, more or less, the same basic design principles
formulated in the late 1940s and attributed to John von Neumann. The ingenious
scenario is very simple and essentially goes as follows: A control unit fetches an
instruction and its operands from a memory unit and sends them to a processing unit;
there the instruction is executed and the result sent back to memory. This sequence of
events is repeated for each instruction. There is only one unit of each kind, and only
one instruction can be executed at a time.

xi



xii Preface

With parallel processing the situation is entirely different. A parallel computer is
one that consists of a collection of processing units, or processors, that cooperate to
solve a problem by working simultaneously on different parts of that problem. The
number of processors used can range from a few tens to several millions. As a result,
the time required to solve the problem by a traditional uniprocessor computer is
significantly reduced. This approach is attractive for a number of reasons. First, for
many computational problems, the natural solution is a parallel one. Second, the cost
and size of computer components have declined so sharply in recent years that
parallel computers with a large number of processors have become feasible. And,
third, it is possible in parallel processing to select the parallel architecture that is best
suited to solve the problem or class of problems under consideration. Indeed,
architects of parallel computers have the freedom to decide how many processors are
to be used, how powerful these should be, what interconnection network links them to
one another, whether they share a common memory, to what extent their operations
are to be carried out synchronously, and a host of other issues. This wide range of
choices has been reflected by the many theoretical models of parallel computation
proposed as well as by the several parallel computers that were actually built.

Parallelism is sure to change the way we think about and use computers. It
promises to put within our reach solutions to problems and frontiers of knowledge
never dreamed of before. The rich variety of architectures will lead to the discovery of
novel and more efficient solutions to both old and new problems. It is important
therefore to ask: How do we solve problems on a parallel computer? The primary
ingredient in solving a computational problem on any computer is the solution
method, or algorithm. This book is about algorithms for parallel computers. It describes
how to go about designing algorithms that exploit both the parallelism inherent in the
problem and that available on the computer. It also shows how to analyze these
algorithms in order to evaluate their speed and cost.

The computational problems studied in this book are grouped into three classes:
(1) sorting, searching, and related problems; (2) combinatorial and numerical
problems; and (3) problems arising in a number of application areas.These problems
were chosen due to their fundamental nature. It is shown how a parallel algorithm is
designed and analyzed to solve each problem. In some cases, several algorithms are
presented that perform the same job, each on a different model of parallel com-
putation. Examples are used as often as possible to illustrate the algorithms. Where
necegsary, a sequential algorithm is outlined for the problem at hand. Additional
algorithms arc bricfly described in the Problems and Bibliographical Remarks
sections. A list of references to other publications, where related problems and
algorithms are treated, is provided at the end of each chapter.

The book may serve as a text for a graduate course on parallel algorithms. It was
used at Queen’s University for that purpose during the fall term of 1987. The class met
for four hours every week over a period of twelve weeks. One of the four hours was
devoted to student presentations of additional material, reference to which was found
in the Bibliographical Remarks sections. The book should also be useful to computer
scientists, engineers, and mathematicians who would like to learn about parallel
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models of computation and the design and analysis of parallel algorithms. It is
assumed that the reader possesses the background normally provided by an
undergraduate introductory course on the design and analysis of algorithms.

The most pleasant part of writing a book is when one finally gets a chance to
thank those who helped make the task an enjoyable one. Four people deserve special
credit: Ms. Irene LaFleche prepared the electronic version of the manuscript with her
natural cheerfulness and unmistakable talent. The diagrams are the result of Mr.
Mark Attisha’s expertise, enthusiasm, and skill. Dr. Bruce Chalmers offered numerous
trenchant and insightful comments on an early draft. Advice and assistance on matters
big and small were provided generously by Mr. Thomas Bradshaw. I also wish to
acknowledge the several helpful suggestions made by the students in my CISC-867
class at Queen’s. The support provided by the staff of Prentice Hall at every stage is
greatly appreciated

Finally, I am indebted to my wife, Karolina, and to my two children, Sophia and
Theo, who participated in this project in more ways than I can mention. Theo, in
particular, spent the first year of his life examining, from a vantage point, each word as
it appeared on my writing pad.

Selim G. Akl
Kingston, Ontario
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Introduction

1.1 THE NEED FOR PARALLEL COMPUTERS

A battery of satellites in outer space are collecting data at the rate of 10'° bits per
second. The data represent information on the earth’s weather, pollution, agriculture,
and natural resources. In order for this information to be used in a timely fashion, it
needs to be processed at a speed of at least 10'® operations per second.

Back on earth, a team of surgeons wish to view on a special display a
reconstructed three-dimensional image of a patient’s body in preparation for surgery.
They need to be able to rotate the image at will, obtain a cross-sectional view of an
organ, observe it in living detail, and then perform a simulated surgery while watching
its effect, all without touching the patient. A minimum processing speed of 10'°
operations per second would make this approach worthwhile.

The preceding two examples are representative of applications where trem-
endously fast computers are needed to process vast amounts of data or to perform a
large number of calculations quickly (or at least within a reasonable length of time).
Other such applications include aircraft testing, the development of new drugs, oil
exploration, modeling fusion reactors, economic planning, cryptanalysis, managing
large databases, astronomy, biomedical analysis, real-time speech recognition, robo-
tics, and the solution of large systems of partial differential equations arising from
numerical simulations in disciplines as diverse as seismology, aerodynamics, and
atomic, nuclear, and plasma physics. No computer exists today that can deliver the
processing speeds required by these applications. Even the so-called supercomputers
peak at a few billion operations per second.

Over the past forty years dramatic increases in computing speed were achieved.
Most of these were largely due to the use of inherently faster electronic components by
computer manufacturers. As we went from relays to vacuum tubes to transistors and
from small to medium to large and then to very large scale integration, we witnessed—
often in amazement—the growth in size and range of the computational problems
that we could solve.

Unfortunately, it is evident that this trend will soon come to an end. The limiting
factor is a simple law of physics that gives the speed of light in vacuum. This speed is
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approximately equal to 3 x 10® meters per second. Now, assume that an electronic
device can perform 10'? operations per second. Then it takes longer for a signal to
travel between two such devices one-half of a millimeter apart than it takes for either
of them to process it. In other words, all the gains in speed obtained by building
superfast electronic components are lost while one component is waiting to receive
some input from another one. Why then (one is compelled to ask) not put the two
communicating components even closer together? Again, physics tells us that the
reduction of distance between electronic devices reaches a point beyond which they
begin to interact, thus reducing not only their speed but also their reliability.

It appears that the only way around this problem is to use parallelism. The idea
here is that if several operations are performed simultaneously, then the time taken by
a computation can be significantly reduced. This is a fairly intuitive notion, and one to
which we are accustomed in any organized society. We know that several people of
comparable skills can usually finish a job in a fraction of the time taken by one
individual. From mail distribution to harvesting and from office to factory work, our
everyday life offers numerous examples of parallelism through task sharing.

Even in the field of computing, the idea of parallelism is not entirely new and has
taken many forms. Since the early days of information processing, people realized that
it is greatly advantageous to have the various components of a computer do different
things at the same time. Typically, while the central processing unit is doing
calculations, input can be read from a magnetic tape and output produced on a line
printer. In more advanced machines, there are several simple processors each
specializing in a given computational task, such as operations on floating-point
numbers, for example. Some of today’s most powerful computers contain two or more
processing units that share among themselves the jobs submitted for processing.

In each of the examples just mentioned, parallelism is exploited profitably, but
nowhere near its promised power. Strictly speaking, none of the machines discussed is
truly a parallel computer. In the modern paradigm that we are about to describe,
however, the idea of parallel computing can realize its full potential. Here, our
computational tool is a parallel computer, that is, a computer with many processing
units, or processors. Given a problem to be solved, it is broken into a number of
subproblems. All of these subproblems are now solved simultaneously, each on a
different processor. The results are then combined to produce an answer to the
original problem. This is a radical departure from the model of computation adopted
for the past forty years in building computers—namely, the sequential uniprocessor
machine.

Only during the last ten years has parallelism become truly attractive and a
viable approach to the attainment of very high computational speeds. The declining
cost of computer hardware has made it possible to assemble parallel machines with
millions of processors. Inspired by the challenge, computer scientists began to study
parallel computers both in theory and in practice. Empirical evidence provided by
homegrown prototypes often came to support a large body of theoretical studies. And
very recently, a number of commercial parallel computers have made their ap-
pearance on the market.
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With the availability of the hardware, the most pressing question in parallel
computing today is: How to program parallel computers to solve problems efficiently
and in a practical and economically feasible way? As is the case in the sequential
world, parallel computing requires algorithms, programming languages and com-
pilers, as well as operating systems in order to actually perform a computation on the
parallel hardware. All thege ingredients of parallel computing are currently receiving a
good deal of well-deserved attention from rescarchers.

This book is about one (and perhaps the most fundamental) aspect of
parallelism, namely, parallel algorithms. A parallel algorithm is a solution method for
a given problem destined to be performed on a parallel computer. In order to properly
design such algorithms, one needs to have a clear understanding of the model of
computation underlying the parallel computer.

1.2 MODELS OF COMPUTATION

Any computer, whether sequential or parallel, operates by executing instructions on
data. A stream of instructions (the algorithm) tells the computer what to do at each
step. A stream of data (the input to the algorithm) is affected by these instructions.
Depending on whether there is one or several of these streams, we can distinguish
among four classes of computers:

1. Single Instruction stream, Single Data stream (SISD)

2. Multiple Instruction stream, Single Data stream (MISD)

3. Single Instruction stream, Multiple Data stream (SIMD)

4. Multiple Instruction stream, Multiple Data stream (MIMD).

We now examine each of these classes in some detail. In the discussion that follows we
shall not be concerned with input, output, or peripheral units that are available on
every computer.

1.2.1 SISD Computers

A computer in this class consists of a single processing unit receiving a single stream of
instructions that operate on a single stream of data, as shown in Fig. 1.1. At each step
during the computation the control unit emits one instruction that operates on a
datum obtained from the memory unit. Such an instruction may tell the processor, for

CONTROL INSTRUCTION PROCESSOR DATA MEMORY
STREAM STREAM

Figure 1.1 SISD computer.
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example, to perform some arithmetic or logic operation on the datum and then put it
back in memory.

The overwhelming majority of computers today adhere to this model invented
by John von Neumann and his collaborators in the late 1940s. An algorithm for a
computer in this class is said to be sequential (or serial).

Example 1.1

In order to compute the sum of n numbers, the processor needs to gain access to the
memory n consecutive times and each time receive one number. There are also n — 1
additions involved that are executed in sequence. Therefore, this computation requires on
the order of n operations in total. []

This example shows that algorithms for SISD computers do not contain any
parallelism. The reason is obvious, there is only one processor! In order to obtain
from a computer the kind of parallel operation defined earlier, it will need to have
several processors. This is provided by the next three classes of computers, the classes
of interest in this book. In each of these classes, a computer possesses N processors,
where N > 1.

1.2.2 MISD Computers

Here, N processors each with its own control unit share a common memory unit
where data reside, as shown in Fig. 1.2. There are N streams of instructions and one
stream of data. At each step, one datum received from memory is operated upon by all
the processors simultaneously, each according to the instruction it receives from its
control. Thus, parallelism is achieved by letting the processors do different things at
the same time on the same datum. This class of computers lends itself naturally to
those computations requiring an input to be subjected to several operations, each
receiving the input in its original form. Two such computations are now illustrated.

PROCESSOR INSTRUCTION CONTROL
1 STREAM 1 1
PROGESSOR INSTRUGTION CONTROL
2 STREAM 2 2
MEMORY DATA
STREAM
[ ] *
L]
[ [
PROCESSOR INSTRUCTION CONTROL
N STREAM N N

Figure 1.2 MISD computer.
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Example 1.2

It is required to determine whether a given positive integer z has no divisors except 1 and
itself. The obvious solution to this problem is to try all possible divisors of z: If none of
thege succeeds in dividing z, then z is said to be prime; otherwise z is said to be composite.

We can implement this solution as a parallel algorithm on an MISD computer.
The idea is to split the job of testing potential divisors among processors. Assume that
there are as many processors on the parallel computer as there are potential divisors of z.
All processors take z as input, then cach tries to divide it by its associated potential
divisor and issues an appropriate output based on the result. Thus it is possible to
determine in one step whether z 1s prime. More realistically, if there are fewer processors
than potential divisors, then each processor can be given the job of testing a different
subset of these divisors. In either case, a substantial speedup is obtained over a purely
sequential implementation.

Although more efficient solutions to the problem of primality testing exist, we have
chosen the simple one as it illustrates the point without the need for much mathematical
sophistication. [

Example 1.3

In many applications, we often need to determine to which of a number of classes does a
given object belong. The object may be a mathematical one, where it is required to
associate a number with one of several sets, each with its own properties. Or it may be a
physical one: A robot scanning the deep-sea bed “sees” different objects that it has to
recognize in order to distinguish among fish, rocks, algae, and so on. Typically,
membership of the object is determined by subjecting it to a number of different tests.

The classification process can be done very quickly on an MISD computer with as
many processors as there are classes. Each processor is associated with a class and can
recognize members of that class through a computational test. Given an object to be
classified, it is sent simultaneously to all processors where it is tested in parallel. The
object belongs to the class associated with that processor that reports the success of its
test. (Of course, it may be that the object does not belong to any of the classes tested for,
in which case all processors report failure.) As in example 1.2, when fewer processors than
classes are available, several tests are performed by each processor; here, however, in
reporting success, a processor must also provide the class to which the object
belongs. [

The preceding examples show that the class of MISD computers could be
extremely useful in many applications. It is also apparent that the kind of com-
putations that can be carried out efficiently on these computers are of a rather
specialized nature. For most applications, MISD computers would be rather
awkward to use. Parallel computers that are more flexible, and hence suitable for a
wide range of problems, are described in the next two sections.

1.2.3 SIMD Computers

In this class, a parallel computer consists of N identical processors, as shown in Fig.

1.3.
Each of the N processors possesses its own local memory where it can store both



