A XA =
DESIGN PATTERNS

' FORMALIZATION
TECHNIQUES

Design Patterns
Formalization Techniques

Toufik Taibi ‘
United Arab Emirates University, UAE

IGI PUBLISHING
Hershey * New York

Acquisition Editor: Kristir‘Klingcr

Senior Managing Editor: Jennifer Neidig

Managing Editor: Sara Reed

Assistant Managing Editor: Sharon Berger

Development Editor: Kristin Roth

Copy Editor: April Schmidt and Lanette Ehrhardt

Typesetter: Jamie Snavely s
Cover Design: Lisa Tosheff

Printed at: Yurchak Printing Inc.

Published in the United States of America by
IGI Publishing (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-pub.com
Web site: http://www.igi-pub.com

and in the United Kingdom by
IGI Publishing (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by IGI Global. All fights reserved. No part of this book may be reproduced in any form
or by any means, electronic or mechanical. including photocopying, without written permission from the
publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the names of
the products or companies does not indicate a claim of ownership by 1GI Global of the trademark or regis-
tered trademark.

Library of Congress Cataloging-in-Publication Data

Design patterns formalization techniques / Toufik Taibi, editor.
p. cm.

Summary: “This book focuses on formalizing the solution element of patterns, providing tangible bencfits to
pattern users, rescarchers, scholars, academicians, practitioners and students working in the field of Design
patterns and software reuse; it explains details on several specification languages, allowing readers to choose
the most suitable formal technique to solve their specific inquiries”—Provided by publisher.

Includes bibliographical references and index.

ISBN 978-1-59904-219-0 (hardcover)—ISBN 978-1-59904-221-3 (ebook)

1. Software patterns. 2. Formal methods (Computer science) 3. Software architecture. I, Taibi, Toufik,
1969-

QA76.76.P37D47 2007

005.1—dc22

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

Al work contributed to this book is new, previously-unpublished material. The views expressed in this book
are those of the authors, but not necessarily of the publisher.

Vi

Foreword

Software design is a fledgling discipline. When the “software crisis” came to be acknowledged
during the late 1960s, software development projects have been marred by budget overflows
and catastrophic failures. This situation has largely remained unchanged. Programmers still
create poorly-understood systems of monstrous complexity which suffer from a range of
problems directly linked to the lack of abstraction: lack of means of communicating de-
sign decisions, absence of effective pedagogic tools for training novice programmers, and
inadequate means for maintaining gigantic software systems. In the recent years, we have
witnessed an explosion of loosely-related software technologies, techniques, notations,
paradigms, idioms, methodologies, and most of all proprietary and poorly-understood ad-hoc
solutions, driven by market forces more than by design, planning, or research.

Design patterns were introduced to programming practices at the end of the 1980s as a
result of dissatisfaction with software’s state of affairs. The few means of abstraction in
existence at the time, such as algorithms and data structures, narrowly-suited procedural
programming, poorly fitting with the growing use of object-oriented programming para-
digm. For the first time, an abstraction technique at hand was general enough to be useful
for practitioners and academics alike, specific enough to enter textbooks, broad enough to
be useful during any stage in the development process, and generic enough to support any
programming paradigm. The introduction of Design patterns marks a turning point in the
history of software design.

In 1995, we witnessed the publication of a catalogue (Gamma, Helm, Johnson, & Vlissides,
1995) of 23 Design patterns written by four experienced object-oriented designers. The
catalogue, which came to be known as the “Gang of Four” catalogue, was an immediate
success. The abstractions described offer a rich vocabulary for abstractions for conceptualis-
ing, designing, brain-storming, communicating, documenting, understanding, maintaining,
and teaching about software. Each pattern captures a design motif that is common enough
to deserve wide recognition, described in clarity and sifficient detail to indicate the conse-
quences of choosing to apply it. Patterns help novices avoid common pitfalls and encour-
age experienced programmers to build better software. As a result, Design patterns entered

Vii

textbooks and became the subject matter of scientific papers, conferences, and intensive
efforts for providing tool-support by a broad range of industrial software development
environments. In the decade since they have entered the zeitgeist, Design patterns have
revolutionized software design.

Early on, the attempt to reason about and provide tool support for Design patterns have led
many to recognize that verbal descriptions and case studies are not enough. The software
engineering community came to realize that conceptual clarity and automation require a
formal specification language. The central problem in software design has therefore shifted
from seeking suitable abstractions to providing precise means for capturing and represent-
ing them. But existing modelling notations which were designed for documenting design
decisions tailored for specific programs, proved inadequate for the purpose of modelling
abstract design motifs. This shortcoming has motivated the investigation in formal model-
ling techniques which is the subject matter of this book.

Mathematics is the most successful conceptual tool for capturing, representing, understand-
ing, and using abstractions. Effective mathematical analysis and modelling is the hallmark of
modern science and a mark of maturity of an engineering discipline. The research in formal
techniques for modelling Design patterns is therefore the next natural step in the progress of
software design. This line of investigation is vital for achieving conceptual clarity and ever
more potent means of abstraction. This book provides a summary of this investigation.

A convergence of formalization techniques for Design patterns, expected to evolve within
a decade or two, is vital for establishing a sound foundation for using and understanding
patterns. Convergence is also crucial for communicating about and teaching patterns. Given
the central role of Design patterns, such an achievement is widely taken to be the most im*
portant vehicle of progress for software design and a prerequisite for a regimented engineer-
ing discipline. The next generation of software design techniques may very well depend on
accomplishing convergence. We hope this book shall speed and facilitate this process.

Amnon Eden

Layer-de-la-Haye, December 2006

Amnon H. Eden is a lecturer with the University of Essex and a research fellow with the Center For
Inquiry. He is investigating the problem of modelling Design patterns since 1996. In 1998, Eden re-
ceived his PhD from the Department of Computer Science, at Tel Aviv University, for his dissertation
on language for patterns uniform specification (LePUS) and the building-blocks of object-oriented
design. Eden’s contributions also include the intension/locality hypothesis, the notion of evolution

. complexity, and the ontology of software. Eden lives with his partner in Layer-de-la-Haye, UK.

Reference

v

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of
reusable object-oriented systems. Addison-Wesley Professional.

viii

Preface

Christopher Alexander was the first to introduce patterns as a form of describing accumu-
lated experiences in the field of architecture. He defines a pattern as a construct made of
three parts: a context, a set of forces and a solution (Alexander, Ishikawa, & Silverstein,
1977). The context reflects the conditions under which the pattern holds (Alexander, 1979).
The forces occur repeatedly in the context and represent the problem(s) faced (Alexander,
1979). The solution is a configuration that allows the forces to resolve themselves (i.e., bal-
ances the forces) (Alexander, 1979). Alexander’s patterns comprise commonly encountered
problems and their appropriate solutions for the making of successful towns and buildings
in a western environment. Alexander called a set of correlated patterns a pattern language,
because patterns form a vocabulary of concepts used in communications that take place
between experts and novices.

Ward Cunningham and Kent Beck (1987) were inspired by Alexander’s work and decided
to adapt it to software development. Their first five patterns dealt with the design of user
interfaces. This marked the birth of patterns in the software field. Nowadays, software
patterns are so popular that they are being applied in virtually every aspect of computing.
Moreover, the concept of patterns is being adapted to many other fields, such as manage-
ment, education, and so forth.

‘There are many kinds of software patterns based on different categorizing criteria. If the
focus is on the software design phase, patterns are classified according to their abstraction
level into architectural patterns, Design patterns, and idioms. This book mainly focuses
on Design patterns. As such, in this preface, the terms Design patterns and patterns can be
used interchangeably.

A pattern can be defined as a description of a proven (successful or efficient) solution to a
recurring problem within a context. The above definition keeps the essence of Alexander’s
original definition by mentioning the three pillars of a pattern (context, problem, and solu-
tion). Reusing patterns usually yields better quality software within a reduced time frame.
As such, they are considered artifacts of software reusability.

Patterns are published mostly within collections or catalogs. However, the most influential
publication of Design patterns is the catalog by the “Gang of Four” (GoF) (Gamma, Helm,

Johnson, & Vlissides, 1995), which listed 23 patterns classified under three categories: cre-
ational, structural, and behavioral. All patterns recorded in the GoF catalog were described
in great detail and share an identical format of presentation.

Patterns are used as a way of improving software design productivity and quality for the
following reasons: '

. Patterns capture previous design experiences, and make it available to other design-
ers. Therefore, designers do not need to discover solutions for every problem from
scratch. :

. Patterns form a more flexible foundation for reuse, as they can be reused in many
ways.

. Patterns serve as a communication medium among software designers.

. Patterns can be considered microarchitectures, from which bigger software architec-

tures can be built.

Well-established engineering disciplines have handbooks that describe successful solutions
to known problems. Though as a discipline, software engineering is a long way from that
goal, patterns have been useful for software engineers to reuse successful solutions.

Currently most patterns are described using a combination of textual descriptions, object-
oriented (OO) graphical notations such as unified modeling language (UML) (Rumbaugh,
Jacobson, & Booch, 1998), and sample code fragments. The intention is to make them easy
to read and use and to build a pattern vocabulary. However, informal descriptions give rise
to ambiguity, and limit tool support and correct usage. Tool support can play a great role in
automated pattern mining, detection of pattern variants, and code generation from pattern
specification.

Hence, there is a need for a formal means of accurately describing patterns in order to
achieve the following goals:

. Better understand patterns and their composition. This will help know when and how
to use them properly in order to take full advantage of their inherent benefits.

. Resolve the following issues regarding relationships between patterns such as duplica-
tion, refinement, and disjunction. Resolving the above-mentioned questions will ease
the process of pattern repository management.

. Allow the development of tool support in activities related to patterns.

Many formal approaches for pattern specification have been emerging as a means to cope
with the inherent shortcomings of informal descriptions. Despite being based on different
mathematical formalisms, they share the same goal, which is accurately describing patterns
in orderto allow rigorous reasoning about them, their instances, their relationships and their
composition and facilitate tool support for their usage. It is important to note that formal
approaches to Design pattern specifications are not intended to replace existing informal
approaches, but to complement them.

Currently, there is no single avenpe for authors actively involved in the field of formal
specification of Design patterns to publish their work. There has been neither a dedicated
conference nor a special journal issue that covers precisely this field. Since this book contains
chapters describing different Design pattern formalization techniques, it will contribute to
the state-of-the-art in the field and will be a one-stop for academicians, research scholars,
students, and practitioners to learn about the details of each of the techniques.

The book is organized into X VI chapters. A brief description of each of the chapters follows.
These were mainly taken from the abstracts of the chapters.

Chapter I describes Balanced pattern specification language (BPSL), a language intended
to accurately describe patterns in order to allow rigorous reasoning about them. BPSL
incorporates the formal specification of both structural and behavioral aspects of patterns. .
The structural aspect formalization is based on first-order logic (FOL), while the behay-
ioral aspect formalization is based on temporal logic of actions (TLA). Moreover, BPSL
can formalize pattern composition and instances of patterns (possible implementations of
a given pattern).

Chapter I1 describes the Design pattern modeling language (DPML), a notation supporting
the specification of Design pattern solutions and their instantiation into UML design models.
DPML uses a simple set of visual abstractions and readily lends itself to tool support. DPML
Design pattern solution specifications are used to construct visual, formal specifications of
Design patterns. DPML instantiation diagrams are used to link a Design pattern solution
specification to instances of a UML model, indicating the roles played by different UML
elements in the generic Design pattern solution. A prototype tool is described, together with
an evaluation of the language and tool.

Chapter 111 shows how formal specifications of GoF patterns, based on the rigorous ap-
proach to industrial software engineering (RAISE) language, have been helpful to develop
tool support. Thus, the object-oriented design process is extended by the inclusion of pat-
tern-based modeling and verification steps. The latter involving checking design correctness
and appropriate pattern application through the use of a supporting tool, called DePMoVe
(design and pattern modeling and verification).

Chapter IV describes an abstraction mechanism for collective behavior in reactive distrib-
uted systems. The mechanism allows the expression of recurring patterns of object interac-
tions in a parametric form, and to formally verify temporal safety properties induced by
applications of the patterns. The authors present the abstraction mechanism and compare
it to Design patterns, an established software engineering concept. While there are some
obvious similarities, because the common theme is abstraction of object interactions, there
are important differences as well. Authors discuss how the emphasis on full formality af-
fects what can be expressed and achieved in terms of patterns of object interactions. The
approach is illustrated with the OBserver and MEMENTO patterns.

In Chapter V, authors have investigated several approaches to the formal specification of
Design patterns. In particular, they have separated the structural and behavioral aspects of
Design patterns and proposed specification methods based on first-order logic, temporal
logic, temporal logic of action, process calculus, and Prolog. They also explore verification
techniques based on theorem proving. The main objective of this chapter is to describe their
investigations on formal specification techniques for Design patterns, and then demonstrate
using these specifications as the methods of reasoning about Design pattern properties when
they are used in software systems.

xi

Chapter VI presents the SpiNE language as a way of representing Design patterns in a suit-
able manner for performing verification of a pattern’s implementation in a particular source
language. SpINE is used by a proof engine called HEDGEHOG, which is used to verify whether
a pattern is correctly implemented.

Chapter VII presents a viewpoint based on intent-oriented design (I0D) that yields simple
formalisms and a conceptual basis for tools supporting design and implementation from
an intent-oriented perspective. The system for pattern query and recognition (SPQR) is an
automated framework for analysis of software systems in the small or the large, and detec-
tion of instances of known programming concepts in a flexible, yet formal, manner. These
concepts, when combined in well-defined ways to form abstractions, as found in the Design
patterns literature, lead to the automated detection of Design patterns directly from source
code and other design artifacts. The chapter describes the three major portions of SPQR
briefly, and uses it to facilitate a discussion of the underlying formalizations of Design pat-
terns with a concrete example, from source code to completed results.

Chapter VIII describes techniques for the verification of refactorings or transformations
which introduce Design patterns. The techniques use a semantics of object-oriented systems
defined by the object calculus and the pattern transformations are proved to be refinements
using this semantics.

Chapter IX describes a UML-based pattern specification language called role-based
metamodeling language (RBML), which defines the solution domain of Design patterns
in terms of roles at the metamodel level. The chapter discusses benefits of the RBML and
presents notation for capturing various perspectives of pattern properties. The OBSERVER,
INTERPRETER, and ITERATOR patterns are used to describe RBML. Tool support for the RBML
and the future trends in pattern specification are also discussed.

In Chapter X, the formal specification of a Design pattern is given as a class operator that
transforms a design given as a set of classes into a new design that takes into account the
description and properties of the Design pattern. The operator is specified in the SLam-SL
specification language, in terms of pre- and postconditions. Precondition collects proper-
ties required to apply the pattern and post-condition relates input classes and result classes
encompassing most of the intent and consequences sections of the pattern.

Chapter XI describes a formal, logic-based language for representing pattern structure and
an extension that can also represent other aspects of patterns, such as intent, applicability, and
collaboration. This mathematical basis serves to eliminate ambiguities. The chapter explains
the concepts underlying the languages and shows their utility by representing two classical
patterns, some concurrent patterns and various aspects of a few other patterns.

Chapter XII introduces an approach to define Design patterns using Semantic Web technolo-
gies. For this purpose, a vocabulary based on the Web ontology language OWL is developed.
Design patterns can be defined as RDF documents instantiating this vocabulary, and can
be published as resources on standard Web servers. This facilitates the use of patterns as
knowledge artefacts shared by the software engineering community. The instantiation of
patterns in programs is discussed, and the design of a tool is presented that can x-ray pro-
grams for pattern instances based on their formal definitions.

Chapter XIII presents a novel approach allowing the precise specification of patterns as
well as retaining the patterns’ inherent flexibility. The chapter also discusses tools that can
assist.practitioners in determining whether the patterns used in designing their systems have
been implemented correctly. Such tools are important also during system maintenance and

Xii

evolution to ensure that the design jintegrity of a system is not compromised. The authors
also show how their approach lends itself to the construction of such tools.

Chapter X1V introduces the user requirements notation (URN), and demonstrates how it
can be used to formalize patterns in a way that enables rigorous trade-off analysis while
maintaining the genericity of the solution description. URN combines a graphical goal
language, which can be used to capture forces and reason about trade-offs, and g graphical
scenario language, which can be used to describe behavioral solutions in an abstract manner.
Although each language can be used in isolation in pattern descriptions (and have been in
the literature), the focus of this chapter is on their combined use. It includes examples of
formalizing Design patterns with URN together with a process for trade-off analysis:

Chapter XV describes an extended compiler that formalizes patterns, called pattern enforcing
compiler (PEC). Developers use standard Java syntax to mark their classes as implementa-
tions of particular Design patterns. The compiler is then able to use reflection to check whether
the classes do in fact adhere to the constraints of the patterns. The checking possible with
our compiler starts with the obvious static adherence to constraints, such as method pres-
ence, visibility, and naming. However, PEC supports dynamic testing to check the runtime
behavior of classes and code generation to assist in the implementation of complex patterns.
The chapter gives examples of using the patterns supplied with PEC, and also examples of
how to write your own patterns and have PEC enforce these.

Chapter XVI presents Class-Z, a formal language for modelling OO Design patterns.
The chapter demonstrates the language’s unique efficacy in producing precise, concise,
scalable, generic, and appropriately abstract specifications modelling the GoF Design pat-
terns. Mathematical logic is used as a main frame of reference: the language is defined as
a subset of first-order predicate calculus and implementations (programs) are modelled as
finite structures in model theory.

References

Alexander, C. (1979). The timeless way of building. Oxford University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). 4 pattern language: Towns, buildings,
construction. Oxford University Press.

Beck, K., & Cunningham, W. (1987). Using pattern languages for object-oriented programs
(Tech. Rep. No. CR-87-43). Tektronix Inc, Computer Research Laboratory.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of
reusable object-oriented systems. Addison-Wesley Professional.

Rumbaugh, J., Jacobson, 1., & Booch, G. (1998). The unified modeling language reference
manual. Addison-Wesley Professional.

Xiii

Acknowledgment

The editor would like to acknowledge the help of all those who contributed to this one year
long project. Without their help and support, the project could not have been satisfactorily
completed.

Most of the authors of chapters included in this book also served as referees for articles
written by other authors. Many thanks to all those who provided constructive and compre-
hensive reviews. Special thanks also go to all the staff at IGI Global, whose contributions
throughout the whole process from inception of the initial idea to final publication have been
very invaluable. In particular, to our development editor, Kristin Roth, whose continuous
communication via e-mail kept the project on schedule.

I wish also to thank all of the authors for their insights and excellent contributions to this
book.

Finally, I want to thank my wife and children for their love and support throughout this
project.

Toufik Taibi, PhD
Al Ain, UAE
December 2006

Design Patterns
Formalization Techniques

Table of Contents

Foreword vi
Preface viii
Chapter I

An Integrated Approach to Design Patterns Formalization 1

Toufik Taibi, United Arab Emirates University, UAE

Chapter 11

A Visual Language for Design Pattern Modeling and Instantiationcc....... 20
David Maplesden, Orion Systems Ltd., New Zealand
John Hosking, University of Auckland, New Zealand
John Grundy, University of Auckland, New Zealand

Chapter 111
A Generic Model of Object-Oriented Patterns Specified in RSL........c.ccceeeeueuneen. 44
Andrés Flores, University of Comahue, Argentina
- Alejandra Cechich, University of Comahue, Argentina
Gabriela Aranda, University of Comahue, Arsgentina

Chapter IV

Patterns of Collective Behavior‘in Ocsid 73
Joni Helin, Tampere University of Technology, Finland :
Pertti Kellomdiki, Tampere University of Technology, Finland
Tommi Mikkonen, Tampere University of Technology, Finland

Chapter V
Formal Specification and Verification of Design Patterns 94
Jing Dong, University of Texas at Dallas, USA
Paulo Alencar, University of Waterloo, Canada
Donald Cowan, University of Waterloo, Canada

Chapter VI
SpiNE: Language for Pattern Verification 109
Alex Blewitt, Edinburgh University, UK

Chapter VII

Intent-Oriented Design Pattern Formalization Using SPQR 123
Jason Smith, IBM T.J. Watson Research, USA
David Stotts, University of North Carolina at Chapel Hill, USA

Chapter VIII
Formalising Design Patterns as Model Transformations 156
Kevin Lano, King's College, UK

Chapter IX
* The Role-Based Metamodeling Language for Specifying
Design Patterns 183
Dae-Kyoo Kim, Oakland University, USA

Chapter X

Modeling and Reasoning about Design Patterns in SLAm-SL 206
Angel Herranz, Universidad Politécnica de Madrid, Spain
Juan José Moreno-Navarro, IMDEA Software, Spain

Chapter XI |
The Applications and Enhancement of LePUS for Specifying
Design Patterns 236
Rajeev R. Raje, Indiana University-Purdue University Indianapolis, USA
“Sivakumar Chinnasamy, Verizon Information Services, USA
Andrew M. Olson, Indiana University-Purdue University Indianapolis, USA
William Hidgon, University of Indianapolis, USA

Chapter XII
An Ontology Based Representation of Software Design Patterns........................ 258
i Jens Dietrich, Massey University, New Zealand

Chris Elgar, SolNet Solutions Limited, New Zealand

Chapter X111
Precision, Flexibility, and Tool Support: Essential Elements of

Pattern Formalization

Neelam Soundarajan, The Ohio State University, USA
Jason O. Hallstrom, Clemson University, USA

Chapter XIV
Formalizing Patterns with the User Requirements Notation

Gunter Mussbacher, University of Ottawa, Canada
Daniel Amyot, University of Ottawa, Canada
Michael Weiss, Carleton University, Canada

Chapter XV
A Pattern Enforcing Compiler (PEC) for Java: A Practical Way to
Formally Specify Patterns

Howard Lovatt, Macquarie University, Australia
Anthony M. Sloane, Macquarie University, Australia
Dominic R. Verity, Macquarie University, Australia

Chapter XVI
LePUS: A Formal Language for Modeling Design Patterns

Epameinondas Gasparis, University of Essex, UK

About the Authors

Index

280

302

324

357

373

381

An Integrated Approach to Design Patterns Formalization 1

Chapter 1

An Integrated Approach
to Design Patterns
Formalization

Toufik Taibi, United Arab Emirates University, UAE

Abstract

A Design pattern describes a set of proven solutions for a set of recurring design problems
that occur within a context. As such, reusing patterns improves both quality and time-to-
market of software projects. Currently, most patterns are specified in an informal fashion,
which gives rise to ambiguity, and limits tool support and correct usage. This chapter de-
scribes balanced pattern specification language (BPSL), a language intended to accurately
describ&patterns in order to allow rigorous reasoning about them. BPSL incorporates the
formal specification of both structural and behavioral aspects of patterns. Moreover, it can

formalize pattern composition and instances of patterns (possible implementations of a
given pattern).

Copyright © 2007, 1GI Global. Copying or distributing in print (} electronic forms without written permission
of IGI Global is prohibited.

2 Taibi

Introduction

A Design pattern describes a set of proven solutions for a set of recurring design problems
that occurs within a certain context. Hence, reusing patterns yields better quality software
within reduced time frames.

Currently, most patterns are described using a combination of textual descriptions, object-
oriented (OO) graphical notations such as unified modeling language (UML) (Rumbaugh,
Jacobson, & Booch, 1998), and sample code fragments. The intention was to make them
easy to read and use, and to build a pattern vocabulary. However, informal descriptions give
rise to ambiguity, and limit tool support and correct usage. Tool support can play a great
role in automated pattern mining, detection of pattern variants, and code generation from
pattern specification.

The pattern community mostly focuses on the solution element of a pattern and not on its
other elements, such as the problem solved, the context, the important forces (Alexender,
Ishikawa, & Silverstein, 1977) acting within the problem, or the way the pattern resolves
these forces. Indeed, the verbal description of the solution element is the most coherent and
the easiest to formalize. As such, this work also focuses on specifying the solution element
of patterns.

Most formal approaches for pattern specification lack in the area of approachability due to
the assumption that complex mathematical notations are necessary to achieve precision,
thus favoring mathematically mature modelers rather than normal modelers (Taibi & Ngo,
2003b). Another problem of formal approaches is that they are not comprehensive enough
to describe both aspects (structural and behavioral) of patterns. Additionally, only a few of
the formal approaches attempted formalizing pattern composition (Taibi & Ngo, 2003b).

Balanced pattern specification language (BPSL) (Taibi & Ngo, 2003a) was developed in
order to formally specify the structural as well as behavioral aspects of patterns at three
levels of abstraction: pattern composition, patterns, and pattern instances.

First order logic (FOL) (Smullyan, 1995) is used as the formal basis for specifying the
structural aspect of patterns, because relations between pattern participants can be easily
expressed as predicates. Temporal logic of actions (TLA) (Lamport, 1994) is used as the
formal basis for specifying the behavioral aspect of patterns, because it is best suited to
describe the collective behavior of objects. BPSL has been successfully used to specify pat-
terns for stand-alone systems (Taibi & Ngo, 2003a) and also for distributed object computing
systems (Schmidt, Stal, Rohnert, & Buschmann, 2000; Taibi & Ngo, 2004).

The design of component-based software involves the com position of different components.
Patterns are special types of components offering a flexible means of reuse. Since each pat-
tern represents a well-tested abstraction that has many instances, patterns can be considered
building blocks from which reusable and flexible software designs can be built. Checking the
correctness of pattern composition allows detecting problems early in the lifecycle, which
saves time and the cost of fixing errors at later stages. Thus, if formalized, pattern composi-
tion can lead to ready-made architectures from which only instantiation is required to build
robust implementations. Since the specification of the structural and behavioral aspects of
patterns uses two different formalisms (FOL and TLA), pattern composition is formalized
independently for each aspect.

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of IGI Global is prohibited.

of

An Integrated Approach to Design Patterns Formalization 3

The rest of the chapter is organized as follows. Next, the chapter gives a detailed description
of BPSL’s concepts and constructs, while the following section describes BPSL’s composition
process. The chapter then provides case studies on applying BPSL for formally specifying
patterns and their composition. This is followed with a description of how BPSL can be
used to specify pattern instances and related work. Finally, the chapter concludes, providing
future research directions.

Balanced Pattern Specification Language (BPSL)

Structural Aspect Formalization

The structural aspect of patterns is specified using a first-order language called S, , where
“S” stands for “structural.” The following are the formation rules that define the syntax of
formulas in S

BPSL:
. A term is either a constant like 2 or a variable like x.

. An atom is a dyadic (binary) predicate symbol applied to two arguments, each of
which is a term.

. A formula is either an atom, AAB (4 and B are formulas), or any formula 4 and afly
variable x in 3x 4.

As it can be seen from the above formation rules, S
having the following characteristics:

spst 18 @ very simple first-order language

. Each formula is a well-formed formula.
. Each formula is a sentence, as it does not contain free variables.
. Syps, does not support function symbols, restricts predicates to have two arguments

and requires only the usage of the existential quantifier (3).

Variables and constants of S, are many-sorted. Variable and constant symbols represent
classes, typed variables and methods. The sets of classes (or references to classes), typed
variables and methods are designated C, ¥, and M, respectively. Typed variables represent
variables of any predefined or user-defined types except elements of set C. Binary predicate
symbols represent permanent relations among them. BPSL defines a set of primary permanent
relations based on which other permanent relations can be built (Table 1). The term “perma-
nent” isused to differentiate these relations with “temporal” relations, defined below.

In Table 1, MxC is the Cartesian product of M and C. Primary permanent relations represent
the smallest set (in terms of cardinality), on top of which any other permanent relation can
be built. For example, the permanent relation Forwarding is a special case of Invocation,

Copyright © 2007, IGI Global. Copying or distributing in print or electronic forms without written permission
of 1GI Global is prohibited.

