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PREFACE

This report is intended to give a survey of the whole field of nonlincar dynamics
(or “chaos theory,” as it is popularly called) in a compressed form. It is slightly
expanded from a series of lectures given over the space of a single month in 1989.
This young and rapidly growing field is already very extensive, so that this survey
cannot be deep or detailed. Iu particular, no pretense of mathematical rigor is
made. But I do insist on stating key definitions or theorems carefully so that the
reader need not settle for just a qualitative, intuitive understanding. My intention
is to touch on the main ideas so that the reader can see if his or her special
discipline fits in anywhere and if so, can get an approximate notion of what new
ideas or possibilities nonlinear dynamics brings to that field. The cited literature
then allows the reader to proceed further if he or she desires.

I thank Harry Auvermann for suggesting that I give these lectures in the first
place, and David Bandelier for a beautiful job of turning my manuscript into
print. Thanks to David Tofsied for invaluable aid i reformatting the report into
book form. I acknowledge support from the Atmospheric Sciences Laboratory
(representative Harry Auvermann) under the auspices of the Scientific Services
Program administered by Battelle for the Ariny Research Office (D.O. 2008,
Contract DAAL03-86-D-0001).
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1. INTRODUCTORY REMARKS

1.1 Linear Versus Nonlinear

A dynamics describes the tirne evolution of a system. As such, the concept is not
confined to physics, but occurs in many other fields as well — in related sciences
like engineering, chemistry, and biclogy, bul also in ecology, economics, etc. A
nonlinear dynamics describes the time-evolution via nonlinear equations of mo-
tion, which may be ordinary differential equations, partial differential equations,
difference equations, iteration of maps, etc. Nonlinear motion equations have been
around a long time ~ since the beginuning of science, in fact — so why the sudden
blooming of nonlinear dyramics as a new discipline in the last 20 years or so?

The answer is that up to that time nonlinear equations were regarded as not
essentially different from linear ones — more complicated and difficult to solve, of
course, but nothing that suitably refined linear approximations couldn’t handle.
Analytic (“closed form”) solutions were emphasized in textbooks with the con-
fident expectation that “nonamalytic” solutions, if they existed, formed a small
subset of all solutions which didn’t greatly add to the understanding of the
phenomena. But about 20 years ago it was realized that nonlinear equations are
essentially different from linear ones, that they possess properties which can never
be captured by linear approximations, that analytic solutions are the exception,
not the rule, and that solulions sets may show “deterministic chaos.”

Linear equations enjoy by definition the property of superposition. That is, linear
combinations of solutions are also solutions: the solutions form a linear, or vector,
space. Linear theories are highly structured theories, and one has many helpful
theorems at hand. For example, a general solution exists; solutions have only
“fixed” singularities, that is, those occurring in the linear equations themselves.
But do not get the idea that linear theories are considered passé or discredited,
now that we are elucidating the mysteries of nonlinear dynamics. Some of the
most beautiful and accurate theories in physics are linear. Witness the Maxwell
theory of electromagnetism, or quantum mechanics itself, the fundamental theory
of the subatomic world. Indeed, today no failure of quantum mechanics is known.

Nonlinear equations are all the rest: all those which are not linear. Most of the
convenient properties of a linear dynamics mentioned above are lost: there is no
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superposition and no general solution; analytic soluiions are rare or nonexistent;
solutions may have singularities not present in tlie motion equations, and these
may depeund on the inilial conditions, etc. However, interesting new properties
show up in compensation. Asymptotic {timne -+ x:} solutions are often indepen-
dent of initia} conditions and lie on low-dimensional “attractors” in phase space.
There is a complicated set of these stable regimies joined by bifurcations of various
types. There may exist “chaotic” regimes.

Incidentally, the reader should not worry if some of the statements in these
preliminary remarks of chapter 1 seem: a bit vague or elusive by reason of undefined
terms. For uow, it is enough thal they carry some sort of intnitive meaning. All
important terms and concepis will be defiried carefully at the proper places in this
report.

1.2 The Goals of Nonlinear Dynamics

The dynamics that will be our maip focus of attention in this report will be
specified by one or several first order ordma,ry differential equations in time,

dz

z = f(z,t) , :i:—Et- ) 1-1)
or by a map z +— F(z) which is iterated:
z, F(z), F[F(z)], FFF(=)l, - (1-2)

The set of continuous time solutions, or orbits of (1-1) is called a flow, while the set
of discrete-time orbits (1-2) is sometimes called a cascade. Both f and F depend
on parameters which can be varied.

What information do we seek in nonlinear dynamics?

a. The geometry, or more often, topology of the flow (or cascade) as a whole:
phase portraits, stable and unstable manifolds, various low-dimensional
invariant attracting sets if they exist.

b. Bifurcation points, that is, those parameter values at which the flow
“changes qualitatively.”

c. The characteristics of “chaotic” flows, and the various paths to chaos which
the dynamics admits.

What mathematical tools are available for this search? There exist theorems, far
fewer than in linear dynamacs, which limit the possibilities in nonlinear dynamics.
Numerical computation (sometimes called “experimental mathematics”) plays
a big role in discovering the information listed above and in suggesting and
motivating, if not proving, theorems ahout a particular dynamics.
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1.3 “Chaos”

The quotation marks here signal that a consensus has not yet been reached on the
precise definition of this term This accounts for the many apparent contradictions
and fruitless controversies in this subject. Following current custom, we shall
mean by “chaos™ any or il of the inllcwing properties: sensitive dependence on
initial conditions, broadba:id power spoitra, decaying correlations, or rand:mness
or unpredictability of orbils as wmeasured by positive algorithmic complexity or
entropies of the varivue kinds 'These properties are not all independent.

Of these, sensitive deperdence {on initial conditions understood), abbreviated in
this report as SD, is by fur the most important ingredient of “chaos.” In fact,
in its strong, or cxponeaiiai, form $% is accepted by most as the definition of
chaos. The intuitive eaning of SD is the unpredictability - or uncowmputability
- in principle of somne orbits. That is, inevitable errors in initial conditions, no
matter how small, inay get maguificd on computaiion, so that the computed orbit
(or some observable function of the orbit) bears no resemblance to the actual orbit
(or function thereof). This has nothing to do with noise or perturbations from
outside the sysiem. Sensitive dependence is an intrinsic property of the dynamics
in some parameter regimes; il is true “deterministic chaos.” Obviously, this bears
on the ancient philosophical dichotomy between determinism and chance (and
seems at first sight to contradict itf).

In a system which displays “chaos,” there may be several sequences of regimes
leading to “chaotic” behavior, several “paths to chaos,” so to say. The universality
of these various paths in systems superficially very different (for example, iterating
one-dimensional inaps and viscous, incompressible fluid flow) is a surprising
theoretical and experimental result.

To give the reader a preliminary feeling for sensitive dependence, this perhaps
most important concept of nonlinear dynamics, we shall illustrate it on the simple
dynamics of a 1D (one-dimensional) map. The other attributes of “chaos”
mentioned above will be covered later in the main text. Consider the particular
1D map F(z) = pz(l - z) with 0 < z <1 and 0 < u < 4, that is, the iteration
scheme 2,41y = pen(l - 2z,), n=0,1,2,3,---, defining the orbit (1-2). Choose
the parameter value p = 4 and substitute z,, = sin?#8,, 0 < 6, <1. Then the
iteration scheme takes the form sin® 76,4, = 4sin® 70, cos® vy, that is,

0".’.1 = 20,.(modl) (1 - 3)

where (rnod1) means that any integral part of 26, is chopped off so that the result
lies in the interval (0,1). We can actually get an “analytic” solution (!) for this
parameter value, namely

0" = 2“00(7_710(11),

where 85 € (0,1) is the initial value. Now shift the initial point slightly: 8y = 8o+¢;
then
g — on = 2" = ee"h‘ 2
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(as long as 2"¢ < 1), that is, exponential separation of the two initially very close
orbits with Lyapunov ezponentin 2. Obviously, the “error” in the orbit will get big
for n large enough, no matter how small e. This is SD (in particular, exponential
SD).

To be more ﬁmntitativ*e about the 8D, write the initial value §; in binary notation.
For example,

bo=1/2+41/4+1/16 4+ 1/128 + - .- = 0.1101001 - . -, (1-4)

Then iteration algorithm (1-3) amounts to shifting the “decimal point” to the right
by one and dropping the digit to the left of this point. For the value (1-4),

8 =.1101001.--, 6, =.101001.. -y 82 =.01001---, 63 =.1001---, etc.
We see that 8, depend: on the (n + 1)st and higher digits of 6y, s0 when n is
large, the value of 6,, depends ezfremely sensitively on the precise value of 6,. For
instance, let 6y and & differ first in the (n + 1)st place, where 6; has a 0 and ;
has a 1. Then 8 — 6y = 27" at most (<<< I for large n). But 8, = .0-.- and
8, = .1---, so that they could differ by as much as 1, or the whole domain {0,1)
of the logistic map for 0 < 4 < 4. On a digital computer with capacity 2™ bits,
the computed orbit {or a given 6, has in general no resemblance to the real orbits
for times n > N.

-+

Ex. 1.1 Take 8, = 1/7. Then we know that the exact orbit is

7, 2/7, 4/T, /1, 2/1, 4/1, 1/7---, T (1-5)

that is, a periodic orbit of period 3. Now perform the iteration {(1-3) on a
pocket calculator or computer and compare with (1-5) for large n.
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2. FUNDAMENTALS OF CONTINUOUS TIME SYSTEMS

2.1 Flows

A system of N first order ordinary differential equations in time ¢,

z = flz,t), is%, zcRY, (2-1)

defines a flow. Here we have taken the flow to be in RY = the set of all real
N-tuples (z1,z2,---zn), which is the usual case; the function f, which thus has
N components (f1, f2,--- fn), maps RY into RV, in symbols f : RY — ®N. If
f(z,t) = f(z) does not explicitly depend on ¢, the flow is called autenomous RN,
or the subset of R in which the flow is confined, is called the phase space of the
flow. A solution z(t) = (21(t),z2(t), - - zn(t)) of the flow (2-1) with initial value
zo = 2(0) = (21(0),22(0),---zn(0)) is called the ordit. A graph of all orbits
or some subset of them in phase space is called a phase portrait, and is useful
to visualize the flow as a whole in the neighborhood of <ome interesting point or
other structure.

Orbits of an autonomous flow do not intersect! Every point in phase space lies on
one and only one orbit. This comes from a beautiful theorem on the uniqueness
of orbits, see, say, Guckenheimer and Holmes [20] (Th. 1.0.1), hereafter also GH,
which states precisely:

Let f be C! in RY. For any open set U C ®", 3 a time interval
(—e¢,¢) such that the orbit ¢¢(zo) exists and is unique for every
z€U. , (2 -2)

For technical mathematical symbols and terms here and hereafter, consult the
mathematical Glossary at the end of Guckenheimer and Holmes., We shall use the
symbol 3, “there exists,” quite often. We shall usually assume the hypotheses of
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Fig. 2.1 Excluded orbits

this theorem fulfilled for our flows, so that orbits like those shown in Fig. 2.1 are
excluded.

The reader nright think that restricting our dynamics to autonomous flows (as we
shall do) is much too narrow. It seems to rule out higher order motion equations,
for example, second order equations such as Newton’s laws deliver, all cases with
forcing terms, and so on. But this is not so. By enlarging our phase space
we can include those cases too. An example will make this clear. -Consider the
nonautonomous, second order dynamics defined by £+ = acoswt, a harmonically
driven linear harmonic oscillator with position coordinate z. Set z; =z, z2 =
£, z3 =wt. Then we get

£, =#3, &2 =—x; +acoszz, &3=Ww

But this is just an autonomous flow in ®%! In particular, even without the forcing
term (a = 0), the phase space is R, not ®' = R; phase space is the space of
position and velocities (or momenta), so it has dimension 2m for a configuration
space of dimension m. Hence without loss of generality we shall assume all flows
autonomous hereafter.

2.2 Linear Stability Analysis
2.2.1 Case of Linear Flows

Consider the linear autonomous flow ¢ = Az, where 4 is a real N x N matrix.
We treat the case which usually occurs in applications: A can be diagonalized by

a gimilarity transformation
T1AT = A (2 -3)

where A is diagonal with the eigenvalues A1, Az, An of A on the diagonal. Thus
the corresponding eigenvectors ey, €z, - €N,

Ae.-=/\.-c.- 3 i=1,2,-'-N, (2-—4)
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are linearly independent (span  RN), and the columns of T are the components
of these eigenvectors. (We prefer to regard A as a linear operator and the e;
as vectors, basis-independent concepts; nevertheless, entirely equivalently one can
interpret A as an N x N matrix, the e; as N x 1, or column, matrices, and Ae; as
matrix multiplication.) The secular equation

[A = Al| = det(4 — A1) =0, - (2-5)

where 1 = unit matrix, determines the eigenvalues \;.

The completely general case, when the eigenvectors of 4 may not span RV, so that
A is not diagonalizable, is treated in appendix A. A can still be put into a simple,
standard form (Jordan canonical form) by a similarity transformation, and the
resulting linear stability analysis is not essentially different from the diagonalizable
case.

We now define some important subspaces of phase space. Divide the eigenvectors
into three subsets,

{u1,u2,---un,} such that Red; >0 ,

{v1,v2,---vNn,} such that Re); <0 |, (2-6)
{w;,ws,---wn,} such that Re);, =0 ,
with N, + N, + N, = N. Then define

Unstable subspace E" = span{u;,uz,---un,},

Stable subspace E* = span{vi,vz,---vnN,}, 2-7)
Center subspace E°= span{w;,w;,---wn,}.

The reason for the nomenclature is this: we assert that every orbit based at zo €
E’ decays exponentially in ¢; every orbit based at zo € E* blows up exponentially
in t; and every orbit based at z, € E° is constant in ¢, as t — +0o. We also claim
that each subspace is invariant (carried into itself) under the flow. Both of these
assertions are easily seen by noting that the solution of # = Az is z(t) = exp(tA)zo.
Taking zo = Ziv‘ ¢; - €j in the siable subspace E*, for example, we see that the
orbit is ’

exp(tA)zo = exp(tA) Z cjej = Z cjexp(iA)e; = Z cjeMie; € E* , (2—8)
Q.E.D. Moreover, since Re); < 0, the length ||z(2)|| — 0. Similarly for zo € E¥, .
lz(2)|} — +o00; for zo € E*, ||z(t)|] = {|zo}] = consi.

A word on the general case: ihe three subspaces are defined by (2-6) and (2-7),
where the vectors are now generalized eigenvectors to the eigenvalues determined
by (2-5). One can show that these subspaces are invariant and that every orbit
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based in E*, E*, or E° decays exponentially, blows up exponentially, or varies
algebraically in ¢ as t — +00. The only difference is that powers of ¢ times an
exponential in ¢ are in general allowed.

Note that the point z* = 0 (the zero vector) is a fized point: £* = 0 for the linear
flow, in fact the only fixed point. The phase portrait of the flow near the fixed
point can be constructed, and the subspaces E*, E*, and E° indicated on the
same graph.

Ex. 2.1 Take A = (] _}). The phase space is 2 = the plane.

8} Find the eigenvalues and eigenvectors. Is A diagonalizable?
b) Find E¥, E*, and E°.

c) Draw the phase portrait around z* = 0 = (0,0), and indicate the
three subspaces.

Ex. 2.2 Same question for

-1 -1 0
A=11 -1 0}, phase space is R
\0 o0 2

As to part ¢. of Ex. 2.2, here there is a pair of complex conjugate eigenvalues and -
eigenvectors: Ay, ey and A = A} ,e. = e, where * is complex conjugate. Form
two real vectors e;, e; from complex combinations of e; and e_; then ey, e; span
the same real two-dimensional subspace of R® as e; and e_. Express the real
orbiis in terms of ¢; and e;. You will find spiralling motion.

2.2.2 Case of Nonlinear Flows

The linear stability analysis of the flow £ = f(z), in general nonlinear, now follows
casily from that of linear flows. Consider a fized point z* of the flow, defined by
z* = f(z*) = 0. We linearize the flow about z*. Set z = z* + u, where [|u|} is
small in some sense, and keep only terms of O(u) in the calculation. Substitute
= = z* + u into the flow equations, expand f(z* + u) in a power series in u about
z*, and keep only the first two terms. For the O(u) part we get

w=Df(z"yu , (2-9)

where D f(z*) is the Jacobian matriz evaluated at the fixed point,

9%
9z; !

=z*

[Df(z*)i; = %,7=1,2,---N. (2 -10)

But (2-9) is just a linear flow with A = Df(z*). So we find the eigenvalues and
eigenvectors, invariant subspaces E®, E?, E¢, etc.; that is, we perform the linear
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stability analysis for this fixed point just as in section 2.2.1. We expect the local
nonlinear flow around z* to be indistinguishable from the linear flow governed by
A = Df(z*). This is true with an important proviso to be made below. -

We work out an illustrative example: consider the van der Pol oscillator % +
b(z> —1)t +z = 0,5 > 0. As an autonomous flow in R? it reads #; = z3,
&2 = —z; — b(z} — 1)z2, 80 fi = 23, fo = —z; — )23 — 1)z;. The only fixed point
is z* = (0,0). The partial derivatives of f are

O o O, O _
le

Of _ _ya2 -
82!1 =40, 822 1—'263122, = b(zl 1),

8tz

so the Jacobian matrix is
. 0 1
Df(z =0)=(_1 b)' (2-11)

The eigenvalues of this are Ay = b/2 £ (4*/4 — 1)}, and the corresponding
eigenvectors ey are found to span 2. Now Rely > 0, so

E* = span{e;,e_} =R?, E*=E°=0. (2-12)

All orbits are repelled exponentially from the fixed point 0.
2.3 Stability Types of Fixed Points

We now have to elucidate the key notion of stability (for a fixed point here, but for
more general structures later), and to see what linear stability analysis has to say
about it. For the fixed point z* of a general autonomous flow, which we assume
is confined to the open set U C RN, we have the definitions (GH, p.3):

The fixed point z* is stable if for every neighborhood V C U of
z* there is a neighborhood V; C V of z* such that every solution
z(t) = ¢e(xo) with zo € V) is defined and € V for all £ > 0. (2—13a)

The fixed point z* is asymptotically stadle if it is stable and for
every neighborhood V C U of z* a neighborhood V; C V of z*
exists such that ¢¢(zo) — z*, # = +o0, for every zo € V5. (2 -13b)

The fixed point z* is unstable if it is not stable. (2 - 13¢)



