- Assembler Vi

for the IBM PC
i and PC-XT

PeterAbei



856H734

PETER
ABEL
ASSEMBLER
FOR
THE IBM PC
AND PC-XT

e &
BRI

a Reston Computer Group book
Reston Publishing Company, Inc.
a Prentice-Hall company

Reston, Virginia

P e e reramerd



Library of Congress Cataloging in Publication Data

Abel, Peter
Assembler for the IBM/PC and PC-XT.

“A Reston Computer Group book.”
1. IBM Personal Computer—Programming. 2. IBM Personal
Computer XT—Programming. 3. Assembler language

(Computer program language) 1. Title. II. Title:
Assembler for the .B.M./P.C. and P.C.-X.T.
QA76.8.12594A23 1983 001.642 83-16057

ISBN 0-8359-0153-X (pbkK)
0-8359-0110-6 (case)

©1984 by Reston Publishing Company, Inc.
A Prentice Hall Company
Reston, Virginia 22090

All rights reserved. No part of this book may
be reproduced, in any way, or by any means,
without permission in writing from the publisher.

10 9 8 7 6 5 4 3 2

Interior design and production: Jack Zibulsky

The final typeset pages composed in Melior were produced on
a TyXSET 1000 system in Reston, Virginia, using a Mergenthaler
Omnitech/2100. The page proofs were produced using a Canon
LBP-10 Laser Printer. RXSET 1000 is a trademark of TyX Corp

IBM®, IBM® Personal Computer and IBM® PC-XT® are
registered trademarks of International Business Machines
Corporation.

Printed in the United States of America




ASSEMBLER FOR
THE IBM PC
AND PC-XT




PREFACE

The origin of the microprocessor goes back to the 1960s when research
designers devised the integrated circuit (IC). The designers combined var-
ious electronic components (such as capacitors and transistors) into a single
component on a silicon “chip.” The manufacturers set this tiny chip into a
device resembling a centipede, and connected it into a functioning system.
As the technology advanced in the early 1970’s, designers combined com-
ponents onto a single chip. The introduction of the Intel 8008 chip in a
computer terminal ushered in the first generation of MiCroprocessors.

By 1974, the 8008 had evolved into a second generation microproces-
sor, the 8080, offering general-purpose utility. Its success prompted other
companies to manufacture 8080 processors or variations such as the Zilog
Z-80.

In 1978, Intel produced the third generation of microprocessors, the
8086 processor, which not only provided some compatibility with the 8080
but also significantly advanced the design. The 8088 processor was devel-
oped as a variation of the 8086 to provide a slightly simpler design and
compatibility with current input/output devices. It is the 8088 that IBM®
selected in 1981 as the processor for its personal computer, and in 1983 for
the PC-XT.®
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PREFACE

At that time, two or three manufacturers dominated the market for
microcomputers. Who would have expected that the introduction of yet
another “micro” to this market would have such immediate success? Per-
haps the name IBM has had much to do with this success, and yet the
IBM Personal Computer®is a powerful, effective device. Within a year, a
number of other manufacturers provided similar microcomputers that share
compatiblity with the IBM PC, no doubt as an effort to share in this success.
These manufacturers include Commodore, Corona, DEC, Grid, Northstar,
Texas Instruments, Toshiba, Vector Graphic, Victor, Wang, and Zenith.

Intel has been further developing its microprocessors. Two coproces-
sors that can operate with the 8086/8088 are the 8087 Numeric Data Processor
(for high-speed, high-precision scientific computations, and the 8089
Input/Output Processor (for interleaved input/output operations). A souped-
up version of the 8086 is the Intel 186 that provides additional operations
to the 8086/8088 instruction set. At a higher level, the Intel 286 features
built in memory management. You may also see these processors referred
to as iAPX 86 (8086), iAPX 88 (8088), iAPX 186, and iAPX 286, where iAPX
means Intel Advanced Processor Architecture.

The amazing spread of microcomputers has also brought about a re-
newed interest in Assembler language. There are two main reasons for
this interest. The first reason is practical: a program written in Assembler
language typically requires less memory space and less execution time. The
second reason is academic: a knowledge of Assembler language and its
resulting machine code provides an understanding of machine architecture
that no “high-level” language can possibly provide.

Everyone these days has heard of such high-level languages such as
BASIC, COBOL, and FORTRAN. These languages were designed to eliminate
the technicalities of a particular computer. An Assembler language however
is designed for a specific computer, or perhaps more accurately, micropro-
cessor. As a consequence, in order to write a program in Assembler lan-
guage for your own computer, you have to know something about the com-
puter’s architecture. But don’t be alarmed! This book supplies all the basic
material that is required. Those requiring even more advanced material can
refer to the IBM Personal Computer Technical Reference Manual.

Among the material and knowledge required for this topic are the
following:

O  Access to an IBM Personal Computer or an equivalent microcomputer
with compatible 8086 or 8088 architecture. The computer should have
a minimum of 64K memory, and at least one diskette drive. Nice to
have but not essential would be an 80-column screen, an additional
32K memory, and a second diskette drive.
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O  Familiarity with the IBM Guide to Operations Manual, especially with
the description of the keyboard.
O A diskette containing the Assembler language translator.

Knowledge not required for this topic is as follows:

O A programming language. Although such knowledge may help you
grasp some programming concepts more readily, it is by no means
essential.

O  Prior knowledge of electronics or circuitry. This book provides the
necessary information about the Intel 8086/8088 PC architecture that
you will require for Assembler programming.

What you can do once you have completed this book:

O  Understand the hardware of the Personal Computer.

Understand machine language code and hexadecimal format.

O Write programs in Assembler language to handle the screen, perform
arithmetic, convert between ASCII and binary formats, perform table
searches and sorts, and perform disk input and output.

Trace machine execution as an aid in debugging.

Write your own macro-instructions.

Link together separately assembled programs.

Understand the steps involved in assembly, link, and execute.

O
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OPERATING SYSTEMS

The two major operating systems available on the IBM PC and other similar
8088-based microcomputers are MS-DOS from MicroSoft (known as PC-DOS
on the IBM PC) and CP/M-86 from Digital Research. Both systems have their
merits and adherents. Since DOS came with the system that I and most of
my acquaintances bought, I have used that system as the primary vehicle
for this book.

The Assembler instruction sets for both systems are virtually identical.
However, there are three main areas in which DOS and CP/M differ:

1.  Operating system commands such as “assemble” a program and “link”
a program, and the support programs for linking and debugging.

2. The special commands to the Assembler program that define special
features for the language.

3. The interface between the Assembler program and the input/output

system.
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I have tried to point out where the two operating systems differ. But
since the suppliers are continually upgrading their versions, you should
consider their manuals as the final authority.

THE APPROACH TO TAKE

This book is intended as both a tutorial and as a permanent reference. To
make the most effective use of your investment in a microcomputer and
software, your best approach is to work through each chapter carefully, and
reread any material that is not immediately clear. Key in the example pro-
grams, assemble them, and use the DOS DEBUG program (or CP/M DDT-86)
to trace execution. Work through the exercises that each chapter provides.

The first six chapters furnish the foundation material for the book and
indeed for the Assembler language. After these chapters, you can begin
with any of these chapters: 8, 9, 10, 12, 13, or 15. Related chapters are 6/7,
10/11, and 13/14. Chapters 18, 19, and 20 are intended as reference.

Learning Assembler and getting your programs to work is an exciting
experience. You'll spend a lot of time and effort, but the rewards are sure
to be great. Good luck in your efforts!

OTHER REFERENCES

Although this book is intended to stand alone, some readers may want to
investigate machine language and 8086/8088 system architecture in more
detail. The following books are recommended:

International Business Machines Corporation, Macro Assembler Manual,
IBM Corp., Personal Computer, P.O. Box 1328, Boca Raton, Florida 33432,
1981. Provides a description of each instruction and a list of Assembler
error messages. The Preface says that the manual “is a reference for ex-
perienced assembler programmers, like yourself (sic), who use the IBM
Personal Computer MACRO Assembler.”

, Technical Reference Manual, 1982. A stack of material on the
IBM PC hardware and input/output devices. A useful reference for those
inclined towards technical material.

Rector, Russell and George Alexy, The 8086 Book, Osborne/McGraw-Hill,
Berkeley, CA, 1980. Provides material on the execution logic of each
instruction and a detailed multiprocessor description.

Morse, Stephen P., The 8086 Primer, Hayden Book Company, Inc., Rochelle
Park, New Jersey, 1980. The author was involved in the design of the
8086 and presents very readable material on why certain operations work
the way they do, plus machine organization and 8086 system design.

Osborne, Adam, An Introduction to Microcomputers, Volume I,
Osborne/McGraw-Hill, 1980. An excellent, readable introduction to the
subject.
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INTRODUCTION TO THE
IBM PERSONAL COMPUTER

Objective:

To explain features of microcomputer
hardware and program organization
for the Assembler programmer.

INTRODUCTION

If you have not digested the material in the IBM Guide to Operations,
then now is the time to do so. Otherwise, let’s get on with the project!
There are some fundamentals that you must master before progressing to
Chapter 2. This material involves the organization of the computer system.
The fundamental building blocks of a computer are the bit and the byte.
These supply the means by which your computer can represent data and
instructions in memory.

A program in machine code consists of different Segments for defining
data, for machine instructions, and a Segment named the Stack that contains
stored addresses. To handle arithmetic, data movement, and addressing, the
computer has a number of registers. This chapter covers all this material
so that you can get going right away in Chapter 2 on your first machine
language program.
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INTRODUCTION TO THE IBM PERSONAL COMPUTER

BITSNBYTES

The smallest unit of data in a computer is a bit. A bit may be magnetized
as off so that its value is zero, or as on so that its value is one. A single
bit doesn’t provide much information, but it is surprising what a bunch of
them can do!

A group of nine bits represents a byte, eight bits for data and one bit faor
“parity.” The eight bits provide the basis for representing characters such
as the letter “A” and the asterisk, and for binary arithmetic. For example, a
representation of the on and off bits for the letter “A” is 01000001 and for
the asterisk is 00101010 (you don’t have to memorize such facts).

Note on parity: The parity bit assumes that the “on” bits for a byte are always
an odd number. The parity bit for the letter “A” would be on and for the asterisk
would be off. When an instruction references a byte in storage, the computer checks
its parity. If parity is even, a bit is assumed to be “lost” and the system displays
an error message. A parity error may be a result of a hardware fault or it may
be nonrecurring; either way, it is a rare event. Thankfully, this is all you need to
know about parity.

You may have wondered how a computer “knows” that a bit value
01000001 represents the letter “A”. When you key in an “A” on the keyboard,
the system accepts a signal from that particular key into a byte in memory
that sets the bits to 01000001. You can move this byte about in memory
as you will, and that particular value when sent to the screen or printer
generates the letter “A”.

For reference purposes, the bits in a byte are numbered 0 to 7 from
right to left as shown for the letter “A” below:

Bit number: 76543210
Bit contents: 01000001

The number 2'° equals 1024, which happens to be the value “K”. For
example, a computer with 64K memory has 64 X 1024 bytes, or 65,536.

Since the 8088 processor in the IBM PC uses 16-bit architecture, it can
access 16-bit values in both memory and its registers. A 16-bit (2-byte) field
is known as a word. The bits in a word are numbered 0 through 15 from
right to left as shown for the letters “PC” below:

Bit number: 15 14 13 12 11 10 9 8 | 7 6 5
Bitcontents: 0 1 0 1 0 000|010

2
0
ASCII CODE

The eight data bits enable 2° (256) possible combinations, from all bits off,
00000000, through all bits on, 11111111. There is no requirement that




