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Preface

The study of data structures is both exciting and challenging. It is exciting
because it presents a wide range of programming techniques that make it
possible to solve larger and more complex problems. It is challenging be-
cause the complex nature of data structures brings with it many concepts
that change the way we approach the design of programs.

Because the study of data structures encompasses an abundant
amount of material, you will find that it is not possible to cover all of it in
one term. In fact, data structures is such a pervasive subject that you will
find it taught in lower-division, upper-division, and graduate programs.

Our primary focus in this text is to present data structures as an in-
troductory subject, taught in a lower-division course. With this focus
in mind, we present the material in a simple, straightforward manner
with many examples and figures. We also deemphasize the mathemat-
ical aspect of data structures, leaving the formal mathematical proofs
of the algorithms for later courses.

Pseudocode is an English-like presentation of the steps needed to solve
a problem. It is written with a relaxed syntax that allows students to
solve a problem at a level that hides the detail while they concentrate
on the problem requirements. In other words, it allows students to con-
centrate on the big picture.

In addition to being an excellent design tool, pseudocode is also lan-
guage independent. Consequently, students can use the same
pseudocode design to implement an algorithm in several different lan-
guages. We developed our pseudocode syntax in our data structures
classes over a 15-year period. During that time, our students have im-
plemented the pseudocode algorithms in Pascal, C, and C++. In this
text, we use C++ for all of our code implementations.

As we discuss the various data structures, we first present the gen-
eral principles using diagrams to help the student visualize the concept.
If the data structure is large and complex enough to require several al-
gorithms, we use a structure chart to present a design solution. Once
the design and structure are fully understood, we present a pseudocode
algorithm, followed as appropriate by its C++ implementation.

xi
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The second major feature of this text is its use of abstract data types
(ADTs) implemented as C++ classes. To make ADTs data independent,
we use template classes. All ADTs accept either one (data) or two (data
and key) arguments. In this way any data type, including derived types
and structures, can be used with all ADTs. Conversely, each ADT can
be used with any data type as long as the required operators are pre-
defined for that type. We introduce the concept immediately in Chapter
1 and use it extensively throughout the text.

Not every data structure should be implemented as an ADT class.
However, where appropriate, we develop a complete C++ implemen-
tation for the student’s study and use. Specifically, students will
find ADT class implementations for Lists (Chapter 3), Stacks (Chap-
ter 4), Queues (Chapter 5), AVL Trees (Chapter 8), B-Trees (Chapter
10), and Graphs (Chapter 12). The code for all of the ADTs is avail-
able on the Instructor’s Materials page at the Brooks/Cole Web site
www.brookscole.com

One of our basic educational tenets is that good habits are formed
early. The corollary is that bad habits are hard to break. Therefore,
we consistently emphasize the principles of structured programming
and software engineering. Every algorithm and program in the book
uses a consistent style. As the algorithms and programs are analyzed,
style and standards are further explained. While we acknowledge that
there are many good styles, our experience has shown that if stu-
dents are exposed to a good style and implement it, they will be better
able to adapt to other good styles. On the other hand, unlearning
sloppy short-cut habits is very difficult.

A brief scan of the book will demonstrate that our approach is prima-
rily visual. There are over 345 figures, 35 tables, 140 algorithms, 180
programs, and numerous code examples. Although this amount of ma-
terial tends to create a large book, these materials make it much easier
for students to follow the concepts.

End of chapter materials reenforce what the student has learned. The
important topics in the chapter are summarized in bulleted lists. Fol-
lowing the summary are three practice sets.

Exercises are multiple choice and short answer questions covering
the material in the chapter. The answers to the odd numbered ques-
tions are included in the back of the book.

Problems are short assignments that ask the student to develop a
pseudocode algorithm or write a short program to be run on a computer.
These problems can usually be developed in 2 to 3 hours. The instruc-
tor's manual contains complete solutions for all exercises and problems.

Projects are longer, major assignments that may take an average
student 6 to 9 hours or more to develop.




Preface xiii

Organization And
Order Of Topics

We have tried to build flexibility into the text so that the material may
be covered in the order that best suits the needs of a particular class.
Although we use the materials in the order presented in the text, there
are other possible sequences (shown in the figure on this page). We rec-
ommend that you assign Chapter 1 as general reading. It contains ba-
sic information on pseudocode, abstract data types, and algorithmics
students will need for the rest of the text.

The first two sections of Chapter 2 review sequential and binary
search concepts. The third section, hashed list searches, may be new
material. If you have covered search algorithms in your programming
class, you may save this chapter for later. On the other hand, if your
students have not studied searching algorithms, then you will need to
cover at least the first section. Many of the algorithms in the following
chapters require an understanding of sequential and ordered list
searching. In many texts, sorting is covered with searching. Because
our sorting chapter includes the recursive implementation of quick
sort and heap sort (which requires an understanding of trees and
heaps), we place it at the end of the text. With the exception of these
two sorts, however, it could be covered before Chapter 3.

Chapter 3 introduces linear lists and the basic linked list data struc-
tures. It also introduces the first complete ADT class. For these reasons,
Chapter 3 should be covered before the remaining chapters in the text.

Chapter 1
Introduction
Chapter 2
Searlching
Chapter 3 Chapter 11
Linked Lists Advanced Sorting
¢ i Concepts
Chapter 4 Chapter 6
Stacks Recursion
Chapter 5 Chapter 7 Chapter 12
Queues Introduction to Trees Graphs
Chapter 8
Search Trees
Chapter 9 Chapter 10
Heaps Multiway Trees

Possible subject sequences
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Introduction

s text assumes that the student has a solid foun-
ation in structured programming principles and has
tten programs of moderate complexity. Although
e text uses C++ for all of its implementation exam-
les, the design and logic of the data structure algo-
rithms are based on pseudocode. This approach
reates a language-independent environment for the
Igorithms.

this chapter we establish a background for the
tools used in the rest of the text, most specifically
)seudocode, the abstract data type, and algorithm
fficiency analysis. We also introduce the measures
ve use throughout the text to discuss algorithm

l ?Xficiency.




1: Introduction

1-1  PSEUDOCODE

Note

Algorithm Header

Although several tools are used to define algorithms, one of the most
common is pseudocode. Pseudocode is an English-like representation
of the code required for an algorithm. It is part English, part structured
code. The English part provides a relaxed syntax that is easy to read.
The code part consists of an extended version of the basic algorithmic
constructs—sequence, selection, and iteration.

One of the most common tools for defining algorithms is
pseudocode, which is part English, part structured code.

In this text we use pseudocode for both data structures and code.
The basic format for data types consists of the name of the data and its
type enclosed in pointed brackets as shown below

count <integer>

The structure of the data is indicated by indenting the data items
as shown below.

node

data <dataType>

link <pointer to node>
end node

This data definition describes a node in a self-referential linked list
that consists of a nested structure (data) and a pointer to the next
node (Link). It assumes that the data description for dataType has
been previously defined.

As mentioned, the pseudocode is used to describe an algorithm. To
facilitate a discussion of the algorithm statements, we number them
using the hierarchical system shown in Algorithm 1-1 and fully de-
scribed in the following sections.

Each algorithm begins with a header that names it, describes its pa-
rameters, and lists any pre- and postconditions. This information is
important because the programmer using the algorithm often sees only
the header information, not the complete algorithm. Therefore, the
header information must be complete enough to communicate to the
programmer everything he or she must know to use the algorithm.

In Algorithm 1-1 there is only one parameter, page number. Param-
eters are identified as pass by reference (ref) or pass by value (val).
The type is included in pointed brackets after the identifier.




