DATA STRUCTURES

A Pseudocode
Approach
with C++

Data Structures
A Pseudocode Approach with C++

{ Richard F. Gilberg
De Anza College

Behrouz A. Forouzan

Brooks/Cole

Thomson Learning ..

Australia ¢ Canada ¢ Mexico ® Singapore ¢ Spain
: United Kingdom e United States

Sponsoring Editor: Kallie Swanson Cover Designer: Christine Garrigan

Marketing Team: Samantha Cabaluna and Christina De Veto Design Coordinator: Roy Neuhaus
Editorial Assistant: Grace Fujimoto Typesetting: Carlisle Communications, Ltd.
Production Coordinator: Mary Vezilich Printing and Binding: R.R. Donnelley/Crawfordsville

Production Service: Carlisle Publishers Services
Print Buyer: Vena Dyer g

COPYRIGHT © 2001 by Brooks/Cole
A division of Thomson Learning
The Thomson Learning logo is a trademark used herein under license.

For more information about this or any other Brooks/Cole product, contact:
BROOKS/COLE

511 Forest Lodge Road

Pacific Grove, CA 93950 USA

www.brookscole.com

1-800-423-0563 (Thomson Learning Academic Resource Center)

All rights reserved. No part of this work may be reproduced, transcribed or used in any form or by any
means—graphic, electronic, or mechanical, including photocopying, recording, taping, Web distribu-
tion, or information storage and/or retrieval systems—without the prior written permission of the pub-
lisher.

For permission to use material from this work, contact us by
Web: www.thomsonrights.com

fax: 1-800-730-2215

phone: 1-800-730-2214

Printed in the United States of America

1098765432

Library of Congress Cataloging-in-Publication Data

Gilberg, Richard F.
Data structures: a pseudocode approach with C++/Richard F. Gilberg, Behrouz A. Forouzan.
Richard F. Gilberg.
p. cm.
Includes index.
ISBN 0-534-95216-X
1. C++ (Computer program language) 2. Data structures (Computer science). I.
Forouzan, Behrouz A. II. Title.

QA76.73.C153 G545 2001
005.13'3—dc21 00-025353
CIP

In memory of my mother, Ann
R. F. Gilberg

To my nephew, Ryan Cameron Kioumehr
B. A. Forouzan

Preface

The study of data structures is both exciting and challenging. It is exciting
because it presents a wide range of programming techniques that make it
possible to solve larger and more complex problems. It is challenging be-
cause the complex nature of data structures brings with it many concepts
that change the way we approach the design of programs.

Because the study of data structures encompasses an abundant
amount of material, you will find that it is not possible to cover all of it in
one term. In fact, data structures is such a pervasive subject that you will
find it taught in lower-division, upper-division, and graduate programs.

Our primary focus in this text is to present data structures as an in-
troductory subject, taught in a lower-division course. With this focus
in mind, we present the material in a simple, straightforward manner
with many examples and figures. We also deemphasize the mathemat-
ical aspect of data structures, leaving the formal mathematical proofs
of the algorithms for later courses.

Pseudocode is an English-like presentation of the steps needed to solve
a problem. It is written with a relaxed syntax that allows students to
solve a problem at a level that hides the detail while they concentrate
on the problem requirements. In other words, it allows students to con-
centrate on the big picture.

In addition to being an excellent design tool, pseudocode is also lan-
guage independent. Consequently, students can use the same
pseudocode design to implement an algorithm in several different lan-
guages. We developed our pseudocode syntax in our data structures
classes over a 15-year period. During that time, our students have im-
plemented the pseudocode algorithms in Pascal, C, and C++. In this
text, we use C++ for all of our code implementations.

As we discuss the various data structures, we first present the gen-
eral principles using diagrams to help the student visualize the concept.
If the data structure is large and complex enough to require several al-
gorithms, we use a structure chart to present a design solution. Once
the design and structure are fully understood, we present a pseudocode
algorithm, followed as appropriate by its C++ implementation.

xi

Abstract Data Types

Structure and Style

Visual Approach

Pedagogical End
Materials

Preface

The second major feature of this text is its use of abstract data types
(ADTs) implemented as C++ classes. To make ADTs data independent,
we use template classes. All ADTs accept either one (data) or two (data
and key) arguments. In this way any data type, including derived types
and structures, can be used with all ADTs. Conversely, each ADT can
be used with any data type as long as the required operators are pre-
defined for that type. We introduce the concept immediately in Chapter
1 and use it extensively throughout the text.

Not every data structure should be implemented as an ADT class.
However, where appropriate, we develop a complete C++ implemen-
tation for the student’s study and use. Specifically, students will
find ADT class implementations for Lists (Chapter 3), Stacks (Chap-
ter 4), Queues (Chapter 5), AVL Trees (Chapter 8), B-Trees (Chapter
10), and Graphs (Chapter 12). The code for all of the ADTs is avail-
able on the Instructor’s Materials page at the Brooks/Cole Web site
www.brookscole.com

One of our basic educational tenets is that good habits are formed
early. The corollary is that bad habits are hard to break. Therefore,
we consistently emphasize the principles of structured programming
and software engineering. Every algorithm and program in the book
uses a consistent style. As the algorithms and programs are analyzed,
style and standards are further explained. While we acknowledge that
there are many good styles, our experience has shown that if stu-
dents are exposed to a good style and implement it, they will be better
able to adapt to other good styles. On the other hand, unlearning
sloppy short-cut habits is very difficult.

A brief scan of the book will demonstrate that our approach is prima-
rily visual. There are over 345 figures, 35 tables, 140 algorithms, 180
programs, and numerous code examples. Although this amount of ma-
terial tends to create a large book, these materials make it much easier
for students to follow the concepts.

End of chapter materials reenforce what the student has learned. The
important topics in the chapter are summarized in bulleted lists. Fol-
lowing the summary are three practice sets.

Exercises are multiple choice and short answer questions covering
the material in the chapter. The answers to the odd numbered ques-
tions are included in the back of the book.

Problems are short assignments that ask the student to develop a
pseudocode algorithm or write a short program to be run on a computer.
These problems can usually be developed in 2 to 3 hours. The instruc-
tor's manual contains complete solutions for all exercises and problems.

Projects are longer, major assignments that may take an average
student 6 to 9 hours or more to develop.

Preface xiii

Organization And
Order Of Topics

We have tried to build flexibility into the text so that the material may
be covered in the order that best suits the needs of a particular class.
Although we use the materials in the order presented in the text, there
are other possible sequences (shown in the figure on this page). We rec-
ommend that you assign Chapter 1 as general reading. It contains ba-
sic information on pseudocode, abstract data types, and algorithmics
students will need for the rest of the text.

The first two sections of Chapter 2 review sequential and binary
search concepts. The third section, hashed list searches, may be new
material. If you have covered search algorithms in your programming
class, you may save this chapter for later. On the other hand, if your
students have not studied searching algorithms, then you will need to
cover at least the first section. Many of the algorithms in the following
chapters require an understanding of sequential and ordered list
searching. In many texts, sorting is covered with searching. Because
our sorting chapter includes the recursive implementation of quick
sort and heap sort (which requires an understanding of trees and
heaps), we place it at the end of the text. With the exception of these
two sorts, however, it could be covered before Chapter 3.

Chapter 3 introduces linear lists and the basic linked list data struc-
tures. It also introduces the first complete ADT class. For these reasons,
Chapter 3 should be covered before the remaining chapters in the text.

Chapter 1
Introduction
Chapter 2
Searlching
Chapter 3 Chapter 11
Linked Lists Advanced Sorting
¢ i Concepts
Chapter 4 Chapter 6
Stacks Recursion
Chapter 5 Chapter 7 Chapter 12
Queues Introduction to Trees Graphs
Chapter 8
Search Trees
Chapter 9 Chapter 10
Heaps Multiway Trees

Possible subject sequences

Preface

Acknowledgments

The stack concept (Chapter 4) is basic to an understanding of re-
cursion (Chapter 6), and recursion is in turn required to understand
trees (Chapters 7, 8, and 10) and heaps (Chapter 9). Likewise, queues
(Chapter 5) are used in breadth-first traversals in Chapters 7 and 12.

Chapter 9, Heaps, is a stand-alone chapter. Its only outside refer-
ence is the heap sort in Chapter 11.

We end the text with graphs in Chapter 12. Like many other data
structure subjects, a complete course could be devoted to graphs. In this
chapter, we review some basic graph concepts. Although this material
could be covered anytime after Chapter 3, you will find that it contains
some of the most difficult algorithms in the text. For this reason, we rec-
ommend that you present Chapter 12 at the end of the term, when your
students will be much better prepared to handle the material.

No text of this scope can be developed without the support of many
people. This is especially true for this text. The basic algorithms were
field-tested by our students at De Anza College. Our first acknowledg-
ment, therefore, has to be to the hundreds of students who by using
and commenting on the text made a vital contribution. We especially
thank our student, Scott Demouthe, who not only proofed the text, but
verified every exercise and problem at the ends of the chapters.

We would also like to acknowledge the support of the De Anza staff.
Their encouragement helped us launch the project, and their comments
contributed to its success. To name them all is impossible, but we especial-
ly thank John Perry, Delia Garbacea, and George Rice.

To anyone who has not been through the process, the value of peer
reviews cannot be fully appreciated. Writing a text rapidly becomes a
myopic process. The important guidance of reviewers who can stand
back and review the text as a whole cannot be measured. To twist an
old cliche, “They are not valuable, they are priceless.” We would espe-
cially like to acknowledge the contributions of the following reviewers:

James Clark, University of Tennessee, Martin

Roman Erenshteyn, Goldey-Beacom College

James Glenn, University of Maryland

Tracy Bradley Maples, California State University—Long Beach
Shensheng Zhao, Governors State University

Our thanks also go to our editors and staff at Brooks/Cole, Kallie
Swanson, Grace Fujimoto, and Mary Vezilich. We would also like to ac-
knowledge Kelli Jauron and Kathy Davis at Carlisle Publishers Services.

Last, and most obviously not the least, we thank our families and
friends for their support. Many years ago an author described writing
a text as a “locking yourself in a room” process. While the authors suf-
fer through the writing process, families and friends suffer through
their absence. We can only hope that as they view the final product,
they feel that their sacrifices were worth it.

Richard F. Gilberg
Behrouz A. Forouzan

ABSTRACT DATA TYPES

Singly-Linked Lists

Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program

3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22

Node template declaration (131)
List ADT class declaration (132)
Create linked list (133)

Add node (134)

Insert node (135)

Remove node (136)

Delete node (137)

Search interface function (138)
Search list (138)

Empty list (140)

Full list (140)

List count (141)

Traverse list (141)

Destroy list (143)

Stack ADT-Linked List Implementation

Program
Program
Program
Program
Program
Program
Program
Program
Program

4-6
4-7
4-8
4-9

4-10

4-11

4-12

4-13

4-14

Stack ADT-Array Implementation

Program
Program
Program
Program
Program
Program
Program
Program
Program

4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23

Stack ADT definitions (196)
Create stack (197)

Push stack (198)

Pop stack (199)

Retrieve stack top (200)
Empty stack (200)

Full stack (201)

Stack count (201)

Destroy stack (202)

Data structure for stack array (204)
Create stack constructor (205)
Push stack array (206)

Pop stack array (206)

Retrieve stack array top (207)
Empty stack (208)

Full stack (208)

Stack count (209)

Destroy stack (209)

Queue ADT-Linked List Implementation

5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14

Program
Program
Program
Program
Program
Program
Program
Program
Program
Program

Queue ADT-Array Implementation
Program 5-15
Program 5-16
Program 5-17
Program 5-18
Program 5-19
Program 5-20
Program 5-21
Program 5-22

AVL Tree ADT
8-5
8-6
8-7
8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19
8-20
8-21

Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program
Program

Queue ADT data structures (246)

Create queue (247)

Enqueue (248) I
Dequeue (249)

Queue front (250)

Queue rear (250)

Empty queue (251)

Full queue (251)

Queue count (252)

Destroy queue (252)

Data structure for queue array (256)

Create queue: array implementation (256)
Enqueue: array implementation (258)
Dequeue: array implementation (259) |
Queue front: array implementation (259)
Queue rear: array implementation (260)
Queue full: array implementation (261)
Destroy queue: array implementation (261)

AVL class definition (379)

AVL tree constructor (380)

Application AVL insert function (381)
Recursive insert function (382)

AVL tree insert left balance (384)

AVL tree rotate left and right (386)

AVL tree delete application interface (387)
AVL tree recursive delete (388)

AVL tree delete right balance (390)

AVL retrieve data (393)

AVL tree recursive retrieve function (393)
Traverse AVL tree (395)

AVL empty tree (396)

AVL full tree (396)

AVL tree count (397)

Destroy tree (397)

Recursive destroy tree (398)

(continued in the back of the book)

Contents

1-1

1-2

1-5
1-6

2-1

1 Introduction 1

Pseudocode 2

Algorithm Header 2

Purpose, Conditions, and Return 3
Statement Numbers 4
Variables 4

Algorithm Analysis 5
Statement Constructs 5
Pseudocode Example 6

The Abstract Data Type 7
Atomic and Composite Data 8
Data Structure 8

Abstract Data Type 9

A Model for an Abstract Data
Type 11

ADT Operations 11

ADT Data Structure 12

ADT Class Templates 13
Algorithm Efficiency 14
Linear Loops 15

Logarithmic Loops 16

Nested Loops 17

Big-O Notation 19

Standard Measures of Efficiency 20
Big-O Analysis Examples 21
Summary 24

Practice Sets 25

Exercises 25

Problems 27

Projects 27

' 2 Searching 29

List Searches 30
Sequential Search 30

2-2

Variations on Sequential
Searches 33

Binary Search 37

Binary Search Algorithm 40
Analyzing Search Algorithms 41
C++ Search Algorithms 43
Sequential Search in C++ 43
Binary Search in C++ 44
Search Example 46

Hashed List Searches 49
Basic Concepts 50

Hashing Methods 52
Hashing Algorithm 57
Collision Resolution 59
Open Addressing 61

Linked List Resolution 65
Bucket Hashing 66
Combination Approaches 67
Hash List Example 68
Summary 72

Practice Sets 74

Exercises 74

Problems 75

Projects 75

Linked Lists 77

3-1

3-2

Linear List Concepts 78
Insertion 79

Deletion 80

Retrieval 80

Traversal 80

Linked List Concepts 81
Nodes 81

Linked List Data Structure 82
Pointers to Linked Lists 84

vi Contents

3-3

3-4

3-7

3-8

3-9
3-10

Linked List Algorithms 84
Create List 84

Insert Node 85

Delete Node 90

~Search List 93

Unordered List Search 96
Retrieve Node 97

Empty List 97

Full List 98

List Count 98

Traverse List 99

Destroy List 101
Processing a Linked List 102
Add Node 104

Remove Node 105

Print List 106

Testing Insert and Delete Logic 107

List Applications 108
Append Lists 108

Array of Lists 110
Complex Linked List
Structures 113

Circularly Linked Lists 113
Doubly Linked Lists 113
Multilinked Lists 119
Multilinked List Insert 121
Multilinked List Delete 122
Building a Linked List—C++
Implementation 122
Data Structure 122
Application Functions 123
List Abstract Data Type—Linked
List Implementation 129
List ADT Declaration 131
Summary 143

Practice Sets 144
Exercises 144

Problems 147

Projects 148

4 Stacks 156

4-1

Basic Stack Operations 157
Push 157

Pop 157

Stack Top 158

4-2

4-4

4-5

4-7
4-8

Stack Linked List
Implementation 160
Data Structure 160

Stack Algorithms 161
Stack Applications 168
Reversing Data 169
Reverse a List 169
Convert Decimal to Binary 170
Parsing 171
Postponement 173
Backtracking 181

Eight Queens Problem—C++
Implementation 188
Main Line Logic 189

Get Board Size 190

Stack Abstract Data Type
Implementation 195
Data Structure 195

Stack ADT Implementation 196
Stack ADT—Array
Implementation 202
Array Data Structure 203
Create Stack Array 204
Push Stack Array 205

Pop Stack Array 206
Stack Top Array 207
Empty Stack Array 208
Full Stack Array 208
Stack Count Array 208
Destroy Stack Array 209
Summary 209

Practice Sets 210
Exercises 210

Problems 211

Projects 213

Queues 217

5-1

5-2

Queue Operations 218
Enqueue 218

Dequeue 218

Queue Front 219

Queue Rear 220

Queue Example 220

Queue Linked List Design 220
Data Structure 220

Queue Algorithms 222

5-3
5-4

5-5

5-7

5-8
5-9

Create Queue 224
Enqueue 224

Dequeue 225

Retrieving Queue Data 227
Empty Queue 228

Full Queue 228

Queue Count 228

Destroy Queue 229
Queuing Theory 229
Queue Applications 231
Queue Simulation 231
Categorizing Data 239
Categorizing Data—C++
Implementation 241
Main Line Logic 241

Fill Queues 242

Print Queues 244

Print One Queue 244
Queue ADT—Linked List
Implementation 246
Queue Structure 246
Queue ADT Implementation 247
Queue ADT—Array
Implementation 253
Array Queues Implementation 254
Summary 261

Practice Sets 262
Exercises 262

Problems 265

Projects 266

Recursion 271

6-1

6-2
6-3

Factorial—A Case Study 272

Recursion Defined 272

Iterative Solution 273

Recursive Solution 273

How Recursion Works 275

Designing Recursive

Algorithms 277

The Design Methodology 278

Limitations of Recursion 279

Design Implementation—Reverse a
Linked List 279

Another Case Study—Fibonacci

Numbers 281

6-5

6-7
6-8

Contents vii

The Towers of Hanoi 285
Recursive Towers Of Hanoi 286
C++ Implementations of
Recursion 290

Fibonacci Numbers 290

Prefix to Postfix Conversion 291
Towers of Hanoi 297

Summary 299

Practice Sets 300

Exercises 300

Problems 302

Projects 303

Introduction to Trees 305

7-1

7-6
7-7
7-8

Basic Tree Concepts 306
Terminology 306

Tree Representation 308
Binary Trees 310

Properties 312

Binary Tree Traversals 313
Depth-First Traversals 314
Breadth-First Traversals 320
Expression Trees 322

Infix Traversal 322

Postfix Traversal 324

Prefix Traversal 324

General Trees 324
Changing General Tree to Binary
Tree. 325

Insertions into General Trees 326
General Tree Deletions 327
Huffman Code 327
Summary 332

Practice Sets 333

Exercises 333

Problems 337

Projects 337

Search Trees 338

8-1

Binary Search Trees 339
Definition 339

viii Contents

Operations on Binary Search
Trees 341
Binary Search Tree Search
Algorithms 342
8-2 AVL Trees 353
AVL Balance Factor 354
Balancing Trees 355
AVL Node Structure 360
AVL Delete Algorithm 367
Adjusting the Balance Factors 372
8-3 AVL Tree Implementation 372
Data Structure 372
Program Design 373
Count Words Summary 377
8-4 AVL Abstract Data Type 378
AVL Tree Data Structures 379
AVL Tree Functions 380
AVL Tree Data Processing 392
AVL Tree Utility Functions 395
8-5 Summary 398
8-6 Practice Sets 399
Exercises 399
Problems 403
Projects 403

9 Heaps 406

9-1 Heap Definition 407

9-2 Heap Structure 407

9-3 Basic Heap Algorithms 408
ReheapUp 409
ReheapDown 411

9-4 Heap Data Structure 412

9-5 Heap Algorithms 414
ReheapUp 414
ReheapDown 415
BuildHeap 416
InsertHeap 418
DeleteHeap 419

9-6 Heap Applications 421
Selection Algorithms 421
Priority Queues 423

9-7 A Heap Program 424
Heap Program Design 425
Heap Functions 430

9-8 Summary 433
9-9 Practice Sets 434
Exercises 434
Problems 436
Projects 436

10 Multiway Trees 439

10-1 m-Way Search Trees 440

10-2 B-Trees 442
B-Tree Insertion 443
B-Tree Insert Design 444
B-Tree Insert Node 446
B-Tree Deletion 454
Traverse B-Tree 467
B-Tree Search 470

10-3 Simplified B-Trees 471
2-3 Tree 471
2-3-4 Tree 472

10-4 B-Tree Variations 472
B*Tree 473
B+Tree 474

10-5 Lexical Search Tree 474
Tries 475
Trie Structure 476

10-6 B-Tree Abstract Data Type 478
Header File 479
Utility Functions 481
Insert Algorithms 485
Delete Algorithms 491

10-7 Summary 499

10-8 Practice Sets 499
Exercises 499
Problems 500
Projects 501

11 Advanced Sorting Concepts 502

11-1 General Sort Concepts 503
Sort Order 503
Sort Stability 504
Sort Efficiency 504
Passes 505

11-2 Insertion Sorts 505
Straight Insertion Sort 505
Shell Sort 508

—

Contents ix

Insertion Sort Algorithms 513

Insertion Sort Implementation 515
11-3 Selection Sorts 517

Straight Selection Sort 517

Selection Sort Algorithms 522

Selection Sort Implementation 524
11-4 Exchange Sorts 526

Bubble Sort 526

Bubble Sort Algorithm 527

Quick Sort 529

Exchange Sort Algorithms 536
11-5 Summary 538

Exchange Sort Implementation 538
11-6 External Sorts 542

Merging Ordered Files 543

Merging Unordered Files 544

The Sorting Process 546

Sort Phase Revisited 551
11-7 Summary 553
11-8 Practice Sets 554

Exercises 554

Problems 556

Projects 556

; 12 Graphs 560

12-1 Terminology 561
12-2 Operations 563
Add Vertex 563
Delete Vertex 563
Add Edge 563
Delete Edge 564
Find Vertex 564
Traverse Graph 564
12-3 Graph Storage Structures 568
Adjacency Matrix 568
Adjacency List 569
12-4 Graph Algorithms 570
Create Graph 571
Insert Vertex 572
Delete Vertex 573
Insert Arc 575

Delete Arc 577

Retrieve Vertex 578

First Arc 579

Depth-First Traversal 581

Breadth-First Traversal 583
12-5 Networks 585

Minimum Spanning Tree 585

Shortest Path Algorithm 591
12-6 Abstract Data Type 596

Insert Vertex 598

Delete Vertex 599

Insert Arc 600

Delete Arc 602

Depth-First Traversal 604

Breadth-First Traversal 605
12-7 Summary 607
12-8 Practice Sets 608

Exercises 608

Problems 610

Projects 611

Appendixes

A ASCII Tables 615

B Structure Charts 620

C Program Standards and
Styles 627

D Random Numbers 633

E Standard C++ Libraries 639

F C++ Function Prototypes 641

G Classes Related to Input and
Output 650

H The String Class 655

I Pointers to Functions 666

J Inheritance 670

K C++ Templates 685

L Standard Template Library 692

Solutions to Selected Exercises 712
Glossary 735
Index 747

Introduction

s text assumes that the student has a solid foun-
ation in structured programming principles and has
tten programs of moderate complexity. Although
e text uses C++ for all of its implementation exam-
les, the design and logic of the data structure algo-
rithms are based on pseudocode. This approach
reates a language-independent environment for the
Igorithms.

this chapter we establish a background for the
tools used in the rest of the text, most specifically
)seudocode, the abstract data type, and algorithm
fficiency analysis. We also introduce the measures
ve use throughout the text to discuss algorithm

l ?Xficiency.

1: Introduction

1-1 PSEUDOCODE

Note

Algorithm Header

Although several tools are used to define algorithms, one of the most
common is pseudocode. Pseudocode is an English-like representation
of the code required for an algorithm. It is part English, part structured
code. The English part provides a relaxed syntax that is easy to read.
The code part consists of an extended version of the basic algorithmic
constructs—sequence, selection, and iteration.

One of the most common tools for defining algorithms is
pseudocode, which is part English, part structured code.

In this text we use pseudocode for both data structures and code.
The basic format for data types consists of the name of the data and its
type enclosed in pointed brackets as shown below

count <integer>

The structure of the data is indicated by indenting the data items
as shown below.

node

data <dataType>

link <pointer to node>
end node

This data definition describes a node in a self-referential linked list
that consists of a nested structure (data) and a pointer to the next
node (Link). It assumes that the data description for dataType has
been previously defined.

As mentioned, the pseudocode is used to describe an algorithm. To
facilitate a discussion of the algorithm statements, we number them
using the hierarchical system shown in Algorithm 1-1 and fully de-
scribed in the following sections.

Each algorithm begins with a header that names it, describes its pa-
rameters, and lists any pre- and postconditions. This information is
important because the programmer using the algorithm often sees only
the header information, not the complete algorithm. Therefore, the
header information must be complete enough to communicate to the
programmer everything he or she must know to use the algorithm.

In Algorithm 1-1 there is only one parameter, page number. Param-
eters are identified as pass by reference (ref) or pass by value (val).
The type is included in pointed brackets after the identifier.

