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Introduction

This volume contains the proceedings of the first Quantum Probability meeting held in
Oberwolfach which is the fourth of a series begun with the 1982 meeting of Mondragone and
continued in Heidelberg ('84) and in Leuven ('85). The main topics discussed during the meeting
were: quantum stochastic calculus, mathematical models of quantum noise and their applications to
quantum optics, the quantum Feynman-Kac formula, quantum probability and models of quantum
statistical mechanics, the notion of conditioning in quantum probability and related problems
(dilations, quantum Markov processes), quantum central limit theorems.

We are grateful to the Mathematisches Forschungsinstitut Oberwolfach and to its director
Prof. M. Barner for giving us the unique opportunity of scientific collaboration and mutual
exchange.

We would like to thank also the speakers and all the participants for their contributions to the

vivid and sometimes heated discussions.

L. Accardi
W. v. Waldenfels
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A NOTE ON MEYER’ S NOTE

Luigi Accardi
Dipartimento di Matematica
Universita’ di Roma II

(1.) NOTATIONS AND STATEMENT OF THE PROBLEM

Let us denote

- I(L?(R;) the Boson Fock space over the one-particle space L?(Ry)
=& ={y(f) : f € L*(Ry)} the set of exponential vectors in ['(L?(R) .
-4 = (0) the vacuum state in D(L%(Ry) .

- T(x[o.¢)) the orthogonal projector defined by

F(X[uﬂ)d’(f) = 1/’()({0_t}f)

- Py = Lxpo.4) P ; Py = TXr.00) )P
- W(f) f € L*(R) the Weyl operator characterized by the property

W()lg) = e~ 4 —<t0>y(f 4 h)

- A, A", N the annihilation, creation and number (or gauge or conservation ) fields defined, on & by the
relations :

A(NYlg) =< f,9> ¥(9)
AT(7)(0) = 3 oo $lo + )

d s
Neylg) = i P A Ca)
we write N(s,t) for Ny — N, .

The W(f) are unitary operators on ¥ satisfying the CCR

e
WW(g) =5

- fr] = X[().t}f ) f|t = X|t.co|f

- H, a complex Hilbert space , called the initial space.

-X=H,®T(L*(Ry)

- )'(t] = H,® I'(L3([0,t])) ® Dy

-B:BM):BQL®Fu%Rg)

- By = B(H,® T(L*([0,¢])) ® 1

- Bt = B(1n, ® 1 ® T(L([t, o0))

- f; the shift on L*(R,) .

- gy = I'(f;) the shift on [(L?(Ry)

- uf =1, ® 0y the free time shift on B. where ¢, is the identity map on B(H,,).

<PIZy(f + h)

The objects described above provide a simple and , for a certain class of models , canonical example of a
quantum Markov process (in fact also of a quantum independent increment process in the sense of [2]) and the
Feynman-Kac formula allows to perturb such structures by means of unitary cocycles (for the free time shift )



giving rise to new quantum processes [1| . In particular, the generator L of the quantum Markovian semigroup
canonically associated to the new process is the sum of the generator L, of the semigroup associated to the
original process and of an additional perturbative piece, denoted L; . The problem with the above class of
quantum Markov processes is that the free time shift u; acts trivially on the initial algebra and therefore
the corresponding semigroup is zero so that , as remarked in [1] , in this case one is in fact dealing with
FK perturbations of the identity semigroup . As a consequence of this one looses one of the most attractive
analytical advantages of the classical FK formula, namely the possibility of dealing with perturbations L;
so singular that the operator L, + L; is not well defined ( a typical example is the possibility of giving a
meaning ,via the FK formula , to the formal generator —A + V where A is the Laplacian on R" and Vis a
highly singular potential). By analogy with the classical case we would like to have a time shift vy wich shifts
also the initial random variables (observables) and not only the increments. Moreover , in order to be able to
apply the quantum FK perturbation technique , the free time shift should be such that the structure of the
associated unitary cocycles should be determined quite explicitly , which is rarely the case if this time shift
is itself a Feynman-Kac perturbation of uy. This problem was posed by A. Meyer during the Obervolfach
meeting and in the following I want to outline a possible general scheme for a solution and illustrate it with
an example.

{ 2.) A POSSIBLE SCHEME FOR A SOLUTION

Let us look for a time shift vy’ of the form

v =ji®o,: B=B(X) =B (H,, ® F(Lz(R+)) = B(H,) ® B(F(LZ(R+)) . 8 (2.1)
where
70:B(H,) = B8(H,)®1 — By (2.2)
is a x-homomorphism . For all a, € B(H,) , b € B(I'(L?(R4)) one has
v v (a, ® ) = 5. ® 0. (3e(as) ® 0e (b)) = (70 ® 0.)(5e(as)) - (30 ® 04) (Lo ® 0 (b)) (2.3)

= (7. ®0.)(e(a,)) - (L) ® aase (b))

and since we want v’ to be a l-parameter semi-group of *-endomorphisms, it follows that, for any a, €

B(H,), be B(T(L?(R)) the right hand side of (2.3) must be equal to
v (a, ®b) = juse(a,) ® ocuse(b) (2.4)

Thus v, will be a 1-parameter semi-group if and only if

s

(7 ® 0.)(3¢(as)) = Je4t{as) Va, € B(H.,) (2.5)

Here we give an example of a 3 satisfying condition (2.5) above. First shall we give the expression of j
in unbounded form and then shall write the corresponding bounded form .
In the notations of Section (1) choose H, = L%(R) with a,, a;" denoting the usual annihilation and creation
operators. Define
alal) = al, + Xjo. : a,=a,ora’ (2.6)

with (s,t) — X+ a o-homogeneous normal additive process, i.e.
Xjo.) = X[ €10, ® B (F(Lz([07t|)) ; (Xjo.ep, Xpi. 4] =0 (2.7)

Xiro) + Xps) = Xjry) ; r<s<t (2.8)



Ur(X{s,Q]) = X[.~+r.t+r] (29)
(Xir.o)y Xjug] =0 if (w,t)N(r,s) =9 (2.10)

where [ . , . | denotes , as usual , the commutator . In bounded form and under the additional assumption
that X|o. is self-adjoint, 5; can be defined on the Weyl operators on H,, by :

7t (Wo(2)) = n(expi(za} + 21a,)) = expr(ese(al) + 2t 5 (a.)) = (2.11)
_ e;qm,,hrz*,.“|+|2n,-:|.\’|”_ﬂ) _ W“(z)ez(ZRt'zL\'[lr.q

An example of X sastisfying the required conditions is the momentum operator P(x|o.) . Another
example is Xjo = Wi — W, , which gives the usual free shift in Wiener space (not only in the increment
space cf. Meyer ’ s contribution to these proceedings ) . Other examples could be obtained using the position
or number processes or mixtures of them i.e., Weyl shifts of the form :

]}(W"(Z)) = W.,(Z)W(Z)(“H]; E‘Z"”"l) (l~l2)

(cf. the remark at the end of this note ).

(3.) THE SEMI-GROUP ASSOCIATED TO THE CHOICE X[, = P(xjn.)

The semi-group P!

o

, associated to the "free” evolution vy is

P, =E,(v/(a,) i a.€B8(H) (3.1)

E)=10<®/(.)0>: B(H)®B — B(H,)=B(H,)®1 (3.2)
In our case, choosing b = W, (2} (z € C) and X|y. = P(xjo.) , one finds

PAWL(2)) = By (5 (Wa2))) = Ey (Wale)e! 21000 ) = W, (z)e 201" (5.3

Hence the Weyl operators are in the domain of the generator of P! and one has:

P! = exptL (3.4)

with

L(W,(2)) = —2(Rez)*W,(z) ; z € C) (3.5)

The explicit form of the generator can be obtained with the following semiheuristic, considerations:

W,(z) = expi(za} + 27 a,) (3.6)
therefore 5 3
—W,(2) = (12)W, ] —W,(2) = (e2")W,
S, (2) = ()W, (2) W, (a) = (12, (2)
hence

a a
— + — |W,(2) =1(2Rez)W,,
(Ba,J.r + aa,,) (2) =1(2Rez)W,(2)

and therefore
1 a a

(G +a)l -+ (57
Now, from
la, , af]=1 (3.8)



we deduce
(3.9)

leos J=o5 o, .]=-5—

In conclusion

e 2N - gl b e o

and since ——[au at, .|

L=~[p, . P=~[p,[p, 1] (3.11)

So the free semigroup is a quasifree semigroup of the type considered by Lindblad in [4]. Notice moreover

that, if f is a smooth function and M is multiplication by f in L?(R) , then with the identification p = + 2

one has
lperl |A..j) (312)

hence
_[P, lpr M[]]:M‘frfl (3'13)

which gives the right answer when we restrict our attention to the classical Wiener process.

(4.) v/- Markovian cocycles : an example
Consider the stochastic differential equation (SDE)
U = ((L,, + Xjo.q)dA* = (L} + Xjo.)dA + Zdt)U (4.1)
the unitarity condition (using the Fock Ito table for dA , dA™) is
; Lo 2
Z =1H — 5 l LT + Xi”~‘| | (4.2)

with H self-adjoint. By shifting the equation (4.1) , with H = 0 , with the free shift v{, we obtain the

equation for v, (U;) namely
1
d”;l(Ut) = ((L,, T+ X[n.H.-l)dA:(t) - (LT tr X[u.t+.~])dA.~(t) - E f L,T + X|(l.t+a| |2 dt)v','(U,) (4-3)
where we have used the notation
dA,(t) = A(s+t +dt) — A(s + t) (4.4)

which means that, by definition
T a+T
/ YosedAd(t) = / YidA(t) (4.5)
0 el

Now, written in integral form, the equations (4.1) and (4.3) look respectively like

t
¥
Uy = 1+/ ((L,, + X|(,.,.))dA+(r) - (L,T + X[“_,I)dA(r) — 5 | L: + X|”‘,.| |2 dr) U, (4.6)
0

t
1
vl (V) = 1+/ (Lo Xpouwsr)dA™ (s7) = (L3 + Xpo.wsr))dA(s+7) = 5 | L3 + Xpouwar) 2 dr)2(U;) (47)
0



So that vy (U;) - U, and U, satisfy the same SDE (in the t-variable) with the same initial condition i.e. U,
at t = 0. Therefore , if the X, -process is regular enough to assure the existence and uniqueness of the
solutions of the above SDE , it will follow that

U:(Ut) U, = Uyyt (4.8)

which means that U; is a v - Markovian cocycle . The formal unitarity of follows from (4.2) and in many
interesting cases the unitarity can be effectively proved . Having the unitary cocycle, we can apply the FK
perturbation scheme to the free semigroup associated to vy . Denoting L,, the generator of this semigroup,
a simple calculation shows that the formal generator of the perturbed semigroup

P(b,) := E. (U,* p(b,) U,) (4.9)

will be
Lo+ LYb+bL,+ LYbL, (4.10)

If the operators £, , L, are unbounded, the expression (4.10) will not be in general a well defined operator
. However, for X|o ) as in Section (2) , the operators L, + Xjo.q ; LY + Xjo.¢) are always well defined and
therefore equation (1) makes sense and in some cases the conditions for the existence of a solution of this
equation are much weaker than those which allow to realize £, + L} b+ bL, + L} bL, as a well defined
operator.

Applying the considerations above to the additive functional X|p 4 = P(Xl“-tl) , for which the regularity
problems mentioned above can be solved with standard techniques, one can produce singular perturbations
of the noncommutative Laplacian in full analogy with the classical case.

The physical meaning of the operator X in (4.1) can be understood in terms of Barchielli’ s analysis
(3] : Xo.1] is the input field ( the number process in Barchielli ’s paper ) which interacts with an apparatus
described by the operators L,,, Z in (4.1) . The free evolution of the system is given by the time shift v;’ and
equation (4.1) describes the interaction cocycle giving the evolution of the observables of the coupled system
(input field + apparatus) according to the scheme proposed in [1] . The advantage of the present approach
with respect to [3] is that, due to the v{-cocycle property of the solution of (4.1), the interacting evolution
z + v} (U;F zU;) will now be a 1-parameter automorphism group, in agreement with the basic principles of
quantum physics.
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STOCHASTIC INTEGRATION

Luigi Accardi Dipartimento di Matematica Universita’ di Roma II

Franco Fagnola Dipartimento di Matematica Universita’di Trento

(0.) Introduction.

The programme of developing a ”representation free” stochastic calculus was outlined in [1] . In the

present note, which is part of a joint work in preparation with J.Quagebeur, we concentrate on the first step
of this programme: the definition of stochastic integral. We have chosen to take as our starting point the
axiomatic definition of semimartingale adopted by Letta [4] and based on Dellacherie’s characterization of
the classical semimartingales (cf. [5] and Definition (3.1) below) which has the advantage of looking almost
the same in the classical and in quantum case and of not depending on the detailed structure of the Hilbert
spaces on which the operators act or of the algebras to which these operators are affiliated. It turns out that
in the quantum , as in the classical, case a semimartingale is the most general object for which a stochastic
integral with meaningful properties can be defined. However, being at the moment very far from having
anything like a quantum version of Dellacherie’s theorem, the best we can hope for is to find some sufficient
condition, for an additive process to be a semimartingale, which is at the same time easily applicable and
sufficiently general to cover all the known cases (and at least some new ones). In Theorem (3.3) such a
sufficient condition is proposed; in Section (4.) we show the connection between our notion of stochastic
integrals and the Hilbert space valued stochastic integrals in the sense of Metivier and Pellaumail [6] ; in
Section (5.) we show that the basic integrators appearing in the varoius quasi-free representation of the
CCR or CAR over L?*(R..) are semi-martingales in the sense of Definition (3.1); finally, in Section (6.) , we
prove an existence and uniqueness theorem for stochastic differential equations.
As mentioned in Remark (3.), after Definition (3.1), the sufficient condition introduced in definition (3.3), is
not yet general enough to include all the examples and applications we have in mind. However in the same
Remark(3.) we show how this condition has to be modified in order to achieve this goal. It can be proved
, but it is not done in this note, that, even with this modification the conclusions of both Theorem (3.3)
and Theorem (6.2) continue to hold . In view of this we feel that the present approach is adequate for the
development of a representation free notion of stochastic integral.

(1.) NOTATIONS

Let X be a complex separable Hilbert space. We write B(¥) to denote the vector space of all bounded
operators on ¥ . Let A be a Von Neumann sub algebra of B(X) and let (4¢)¢>0 be an increasing family of
Von Neumann subalgebras of A. We write A’ and ,4;] to denote the commutant of A and Ay in B(X) . Let

£ be a subset of ¥ such that the set A4’ - £ , that we shall denote by D is dense in ¥ . L£(D; ¥) will denote
the set of pairs (F, F'*) of linear operators on ¥ with domain containing D such that

<n F¢>=<FTn &>
for all elements n, € € D . The pair (F, F*) will be denoted F- or, if no confusion can arise, simply F. One
easily verifies that £(D; X) is a vector space. We shall consider two topologies on L(D; ¥) : the strong-*
topology on D , defined by the semi-norms

—A—j| A¢||+ || A%e)] ., €eD

and the weak topology on D defined by the semi-norms



A< AE>] ¢eb

If X is a linear operator on ¥ we write D(X) to indicate the domain of X. For all t > 0 we say that an element
A of L(D;X) is affiliated with Ay and write AEA if AA" DO A'A for all element A’ of A:] . A stochastic
process in X is a family (F;):>0 of elements of L(0; ¥) . Two stochastic processes are said to be equivalent
if they coincide on A’ - € The process (F;) is strongly-* (resp. weakly) measurable if, for all elements
¢ € D the maps t —| F¢ | , | Fe¢ ||(resp. t < & Fié > ) are measurable with respect to
Lebesgue measure . The stochastic process (Fy) is called adapted (to the filtration (Ay)) if, for allt > 0,
the operators Fy and F;' are affiliated with 4 . A process is called an elementary predictable process if it

can be written in the form
n

Zx“k»'kﬂl ® F,
k=1

where 0 < t, <t <..<t, <ocoand F;, is affiliated with ,4,,(] (for all k). If moreover F;, is an element of
Ay, then we say that (F}) is a bounded elementary predictable process.

(2). SIMPLE STOCHASTIC INTEGRALS

DEFINITION (2.1) An additive process on X is a family (X' (s,t)) (0 < s < t) of elements of L(D; )
such that: (i) for all st with s <t , X'(s,t) is affiliated with A . (ii) for all r,s,t with r < s < ¢ we have

X (ryt) = X (r,s) + X (s,t)

on D. For all additive processes X we shall denote by S(X) the set of all adapted processes (F;) which can
be written in the form

Ff = Zx(fk-fk—f-l](t)Ff.k (2-2)
k=1
where:

0<it; <ty < oo < t, < oo (2.3)

F (0)C [ D(X(rs) (2.4)

te<r<s
U X(ne)*D(X(rs)*) € DR (2.5)
te<r<s

for all integers k with 0 < k < n . Given an element F of S(X ) one can define the left stochastic integral

/dX,F, = Xtk ter1) By (2.6)

k=1

and the right stochastic integral

[ Eraxs = 30 R X (o ) (2.7)
k=1

PROPOSITION (2.2) In the above notations
(i) The left and right stochastic integrals are independent of the representation of F in the form (2.2)
(ii) The pair (f dX,F,, [ F.FdX) is an element of £L(D; X)
(i1i) S(X ) is a vector space and for all elements F , G of S(X ) we have

dX.(F.+G,) = [ dX.F.+ | dX.G. (2.8)
/ faxr |

/(F,* + XY = /F_fdxf +/c,+dx,+ (2.9)



(iv) For all elements F of S(X), a’ of 4’ and ¢ of € we have

/dX,.F_,a’.S =a" | dX.F.¢ : /F,*dxja'g: a'/pjdx_fg (2.10)

PROOF. (i) Let F be an element of S(X ) and let

m

thek.tkﬂl(t)pik ; ZX(sh.sH,](t)EJh
k=1

h=1

be two representations of F in the form (2.2). We have then

n n m m n

Zx(tk:tk-u)pu = Z Zx(tk Vospy bkt A s ) P = Z Z X(te Vsnytet1 Aspyr)Fay, =

k=1 k=1h=1 h=1k=1

m

- Z X(S[,,, 5h+1)Fsh

h=1

Similar equalities hold for the simple right stochastic integral. (ii) Let F be an element of S(X ) which can
be written in the form (2.2); we have then (for all £,n€ D)

m m

<, Z X(snysn41)Fo € >=< Z FrXF (snysnq)n, € >
h=1 h=1

(iii) and (iv) are obvious.
NOTATION The pair
([ X Foxiea (), [ 2 xieal)axs)

will be also denoted

t t
(/ dx,F,,/ FrdXx})

a

t
/ dX, F,

or simply, when no confusion can arise,

(3.) STOCHASTIC INTEGRALS

We shall denote by P,(X) (resp. P, (X)) the vector space of all processes F such that there exists a sequence
F") in (X ) with the following properties:

(i) for all t, the operator Ft("" converges *-strongly (resp. weakly) on D to F .
(ii) for all t > 0, & € £ and all integers n one has

sup | FI" € e (resp. sup | B €< cuc)
o<t W<t

where ¢, ¢ is a constant. We say that a sequence (F!™" ) (n > 1) of elements of P.(X) (resp. P (X))
converges in P,(X) (resp. P, (X)) to F if the two conditions above are fulfilled.

DEFINITION (3.1) An additive process X is a strong-* (resp. weak ) semimartingale if for all

sequences F!™)" in S(X ) converging to zero in P.(X) (resp. P, (X)) and for all ¢ > 0 the simple stochastic
integrals




/dX,F'"',/F‘"”dX*
converge to zero strongly (resp. weakly) in £(D; X).

REM ARK (1.) Identifying, as usual, a scalar (real or complex valued ) classical process with the associ-
ated multiplication operators on the L2?-space of the process , the content of Dellacherie’ s theorem mentioned
in the introduction is that a scalar process X is a semimartingale in the sense of Definition (3.1) if and only
if it admits a decomposition of the form

X=M+A

where M is a local martingale and A is the difference of two increasing processes. In fact, in Dellacherie’ s
formulation of condition (i) above, convergence in probability is substituted for *-strong convergence but,
due to condition (ii) and to the fact that for classical processes the *-strong convergence reduces to L>-
convergence, in that case the two conditions are equivalent since a norm bounded sequence in L? which
converges to zero in probability converges to zero also in L?.

REMARK(2.) The following example shows that condition (ii) in the definition of convergence in P,(X)
(resp. Pu (X)) is necessary to have a good notion of stochastic integral. Let

o) = (e =2 <1
and
F(") =1-n- X(0.1/n]

Then, for any element £ of £ we have for all ¢t > 0

I F™M e 2= 0% xgo.m)(t) || € [IP— 0

but for all n

1
| [ M e =) P
0

REMARK (3.) If we want a larger class of semimartingales we must require that the continuity property
expressed in Definition (3.1 ) hold for a stronger topologyes on a smaller space of integrands . In particular
the topologies defined by the seminorms

A CAE |+ | A*CHell 5 Am<g AYCAE>

where C is a process arise naturally in several applications. For example, if A is an element of L(0; X) not
bounded and affiliated with 4, , then
X (s,t)=(t—9)A

is not, in general, an semimartingale in the sense of Definition (3.1 ) because it may not be true that if

Ft("" - € — 0 then AFC(") - & — 0 However in the present paper we shall only consider the case C = 1 (cf.
the remark at the end of the introduction ).

We can now define the strong-* integral with respect to a semimartingale X . Let F be an element of P.(X)
and (F'™)) be a sequence of elements of S(X ) converging to F in P.(X) . For all elements ¢ of £ (hence
also for all p € D and all t > 0, the sequences (F!™)-¢) are Cauchy in ¥ . Moreover in view of the property
of the semimartingale X the limits are independent of the particular sequence. One can therefore define

' t
/dX,F,g: lim / dX.Fi™¢
0 0

n— o0



t t
/F,*dxjgz lim / FiMtdxte
0 0

n—oo

Similarly one defines the weak sthocastic integral. The following elementary properties of the stochastic
integral are easily checked :

PROPOSITION (3.2) Let X be a weak semimartingale , then :

(i) For any element F of £,(X) and for all t > 0, the pair (f'f dX.F, , f‘: FrdX}) is an element of
L(D;X).

(ii) Pu(X) is a vector space and for all elements F , G of P, (X) the relations (2.8) and (2.9) hold for
allt > 0.

(iii) For all elements F of P, (X) , 2’ of A’ and ¢ of £ and for all t > 0 the relations (2.10) hold.
Moreover the same statements hold for P,(X) when X is a strong semimartingale .

PRQOF. (i) Let F'") a sequence of elements of S(X ) converging to F- in P,(X) (resp. P.(X) ). Then
for all elements &, n € D using (2.8) (ii) we have

t t t t
</ FrdXIn & >= lim < / FI"'FdXTn, & >= lim < ry,/ dX . F!"¢ >=< r;,/ dX . F. &>
0 0 0 0

n—oo n—oo

The other statements can be proved in a similar way.

DEFINITION (3.3) An additive process X is called a regular semimartingale for the set & . if it

satisfies the following condition : for all elements ¢ € € there exist two positive funtions g, € L},.(R+) such
that, for all elements F of S(X ) and all ¢t > 0 we have:

t t
||/ dx..F,sn?sC,_f-/ | Fog |2 ge(s)ds (3.2a)
0 (3]
t t
+av+e 2 ) +e2 ot .
I / FrdXye < e / | EX e | gf (s)ds (3.26)

where c¢ ¢ is a positive constant.

THEOREM (3.4) Any regular semi-martingale is a strong-* semimartingale .
PROOF. Let (F'")),,> be a sequence in S(X ) converging to zero in P,(X) then, for all t > 0 we have

lim || F{™¢|=0

n—oo

sup || Fi€ || < cq ¢
o<t

where c; . is a positive constant. But the conditions (3.5) combined with Lebesgue’s theorem implies then
that

t t
lim / dX.F!"'¢ = lim / FiM*tdXte=0
0 n—oo

n— 00 0

If X is a regular semimartingale then ,as shown by the following theorem , we can extend the stochastic
integral (with respect to X ) to a class of processes larger than 2. (X) .
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THEOREM (3.5) Let X be an additive process satisfying condition (3.4) and let (F¢);>o be a measur-
able adapted process such that, for all £ € £ and allt > 0

/ﬂ (II F&|? ge(s)+ | FF € 92(5)>ds < oo (3.3)

R(P)S () D(X(rs) (3.4)

a>r2>t

U [X*(r.5)¢] € D(FY) (3.5)

a>r>t

then we can define the stochastic integral of F with respect to X . Moreover, for all element ¢ € € the
inequalities {3.5) hold.

PROOQOF. Suppose first that for all element & € € the functions s — F;{ are continuous and consider
then the sequence of elements of S(X )

F™ =3 Xk e (6) Fi
k

Then we can show that F!") converges to F- in P,(X) . In fact for all £ € £ , allt > 0 and all € > O there
exists a § > 0 such that, if

|r—s|<é§ i 0<rs<t

then
| Fré—Fogll<e

Thus for all n such that 1/n < § we have

I F™e-Fell<e 5 sup || B g < sup || Fog =i
o<t a<t

Now let (Fy)¢>0 be a measurable adapted process satisfying conditions (3.3), (3.4), (3.5) and let (¢,,),>1 be
the sequence of positive measurable functions

d’n(t) = nXlu._L‘](t)
Let us consider the processes
Fw‘”’ £ :/ d’n(u)FQ—udu
0
which is strongly continuous on € and adapted. Then, for all £ € £ |

t
| Fi™g — Fog |1°=| / bu(u)[Fi_ & — Fiéldu|?
0

and therefore

t t s
[ | Fime — R |2 gf(s)dss/ gg(s)ds/ buls — ) | Fub — Fué |? du

t A
= [ seterds [ buta) | P = R | du
0 0
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t t
:/ ¢,,(u)/ | Fes€ — Fu€ | gels)ds
0 u
4 t
- nf du/ | Feoué — Fu€ | ge(s)ds
0 "

L t
Sn/ du/ “ F‘*u'f—F.'EHZ gE(s)dS_’O
0 0

as n — oo . Similarly

t i t
[ FIM e = B I of (s < [ du [ F2 6= FFE I of (s
Li; 0 0

And so .
lim [ E e~ B 7 of ()ds = 0 (3.)
n— oo 0
Therefore the sequences
t t
[axrme [ Rmraxce
O 0

are Cauchy in ¥ . Moreover these limits are the same for any sequence satisfying (3.6) so we can define

t t
/dX..F‘,E= lim f dX.F!™¢
0 0

n—oo

t t
/F..*dxrf= fi / FiMtax;e
0 0

n— oo

t t
I (/ dX.-F.-E) [ Ct.E/ | Fis I1? ge(s)ds
0 0

And we have moreover

(4.) CLASSICAL STOCHASTIC INTEGRALS

In this section we shall show that, under quite general conditions, the definition of quantum stochastic
integral of the preceeding section includes the classical one . We shall deal with the following objects:

- H - separable Hilbert space

- (02, 7, P) a probability space

- (% (t > 0) a filtration

- (z¢) (t > 0) a locally integrable H-valued semimartingale
We will suppose, for simplicity, that x has a decomposition of the form

Ty = my + /f b(s)ds (4.1)

where: - b: Ry x 1 — H is adapted and , for all ¢t > 0 :

[ B8 1P ds < 0

- m is a locally square integrable martingale with quadratic variation < m > of the form



