PROCEEDINGS

OF THE

1985 INTERNATIONAL CONFERENCE

ON

PARALLEL PROCESSING

August 20-23, 1985

Douglas Degroot
Editor

Co-Sponsored by 1

PART IV




PROCEEDINGS

OF THE

1985 INTERNATIONAL CONFERENCE

ON

PARALLEL PROCESSING

August 20-23, 1985

Douglas Degroot
Editor

Co-Sponsored by

Department of Electrical Engineering
PENN STATE UNIVERSITY
University Park, Pennsylvania

and the
|IEEE Computer Society

In Cooperation with the

/, -\\

'a\cg,

Association for Computing Machinery

{ ~
- PART |
COMPUTER
SOCIETY
PRESS
»)
o -
- S

0 THE INSTITUTE OF ELECTRICAL AND
@IEEE COMPUTER SOCIETY 16864 V1984 £ ECTRONICS ENGINEERS, INC.




A Graph-Based Computation Model for Real-Time Systems

Aloysius K. Mol\"r

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712

Abstract

Real-time systems are unique in that their success
depend on the capability to meet very stringent timing con-
straints involving multiple parallel activities. As a result,
they are among the most difficult systems to build and to
verify. In this paper, a methodology to automate the syn-
thesis of code for time-critical applications is presented. This
methodology is built on a graph-based model to capture the
computational requirements of time-critical systems. In terms
of this model, we can perform resource allocation and other
analysis which are fundamental to the computer-aided design
of time-critical systems.

Key words: real-time systems, design methodology, con-
current processes, parallel computation model,
requirements specification, algorithms, schedul-
tng, program synthests

Introduction

An important application of computers has been to con-
trol physical processes such as regulating a power plant or
guiding the flight of an airplane. These so-called embedded
systems have two important requirements: (1) the capability
to prevent the loss of essential functionalities in the face of
partial failures; and (2) the capability to meet critical timing
constraints. These two capabilities are closely related in the
hard-real-time environment where the system must satisfy
assertions not only about the logical integrity of the
software, but also about the absolute timing of computa-
tional events.! The design and maintenance of these systems
has been widely recognized as posing some of the most chal-
lenging problems in systems research. Some researchers e.g.,
[SCH & SCH 81], [RAND 75| have concentrated on tech-
niques to maintain the logical integrity of these systems. In
this paper, we shall describe a design methodology which is
capable of satisfying critical timing constraints involving
multiple parallel activities and thereby guaranteeing asser-
tions about the absolute timing of computational events.
More importantly, our methodology can be mechanized and
is in fact a distillation of our experience with the successful
implementation of a very high level language for real-time
control applications at MIT [WARD 78].

i Supported by the Office of Naval Research under ONR con-
tract N0OOO14-85-K-0117. Part of this work was done under DARPA
contract NOOO14-75-C-0681 while the author was at the Real Time
Systems Group of the MIT Laboratory for Computer Science.
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Software Automation Strategy

The general strategy of our research involves the follow-
ing steps:
(1) Capture the unique computational characteristics of the
hard-real-time environment by formulating an appropri-
ate formal model.
For the
specifications into an instance of the formal model for

(2) each problem instance, translate design
resource allocation and other analysis.

(3) Perform resource allocation analysis to arrive at an
implementation which meets the specified critical timing

constraints.

The key step in our strategy is to identify an appropri-
ate computational model so that we can translate user
specifications into an instance of the model for resource
analysis. The choice of an appropriate model is important
because it must be sufficiently expressive so that computa-
tional requirements involving multiple activities and timing
constraints can be naturally expressed in it, and yet the
model must also be simple enough so that our design metho-
dology can be mechanizable in practice. Past attempts in
automatic program synthesis have met with limited success

mostly because the optimization problems involved are often
domain-specific and defy general problem-solving techniques.
Our model is formulated by taking advantage of the
domain-specific characteristics common to many hard-real-
time systems. Specifically, (1) a precise way to characterize
their workload is possible; and (2) the computational events
performed by system components at the level of major func-
tional elements are relatively simple: a computational event
is either a functional transformation or transmission of data
values subject to pipelining constraints.

In the following, we shall first briefly review some
related work which uses process-based computation models.
A formal definition of our graph-based mode! and its motiva-
tions will then be given. We shall give a summary of our
results in resource allocation analysis in the context of our
graph-based computation model.

! As an example of a fault in absolute timing, the first flight of
the Space Shuttle was delayed by a synchronjzation error which
was traced to an improbable race condition when several processors
disagreed ci the current value of time. [GARM 81]




Process-Based Models

The work that is most closely related to our research
are the design methodologies that have been proposed for
V\iriting real-time programs. Most of these methodologies are
not directly relevant to hard-real-time applications in that
they do not address the problem of verifying compliance to
timing constraint specifications and most are not sufficiently
precise for automation. Notable exceptions are [DERT 74],
[LEIN 78] and |[WEI et al 80]. In their work, critical timing
constraints are specified by permitting a process to have a
deadline and/or repetition period attribute. In [MOK 83,
we have made a detailed study of process-based models for
specilying hard-real-time systems and have devised algo-
rithms to generate run-time schedulers tailored to meet per-
formance specifications even when there are both synchroni-
zation and (under certain restrictions) mutual exclusion con-
straints.

Our research has also noted some significant shortcom-
ings of process-based models for software automation pur-
poses.? For example, by formalizing the computational
requirements of an application in terms of a set of processes
before analyzing the tradeofl between communication and
computation, a designer may have unnecessarily ruled out
certain system architectures for implementation. Process-
based models are also awkward when the system architecture
includes non-von Neumann type processors such as systolic
arrays. The result is that design methodologies that are
based on process-based models are limited in their usefulness.

A Graph-Based Model for the Hard-Real-Time
Environment

The formal model that we are proposing results from
the cumulation of our experience with the function block
schemata which is the basis of CONSORT [WARD 78|, an
experimental very high level language which has been imple-
mented at MIT. CONSORT has a graphics interface which
allows a control engineer to define controller structures and
specify latency constraints. Our model is significantly
different from that of CONSORT. For motivation, an exam-
ple will immediately follow the definition below.

A graph-based model M is an ordered pair (G,T) where
G is a communication graph and T is a set of timing con-
straints. Specifically, G = (V,E,WV) is a digraph where V
and E are respectively the node and edge sets and Wv is a
function which assigns a non-negative weight to each node in
V. T is a finite set of timing constraints each of which is a
tuple (C,p,d) where C is a task graph, p and d are respec-
tively the non-negative integer period and deadline of the

3 During our investigation the author was at first reluctant to
rarb with process-based models since the process abstraction has
ong been the basis for most software designs and more recently,

timing constraint. Intuitively, the nodes and the edges are
meant to model the [unctional elements and their communi-

cation paths in an application.

A task graph C is an acyclic digraph which is compati-
ble with the communication graph G. We say that the graph
C is compatible with the graph G ifl there is a mapping h
such that: (1) if v is a node in C, then h(v) € V; and (2) Il e
is an edge from a node u to another node v in C, then h(e) is
an edge from h(u) to h(v) in E. (A task graph is meant to
define the precedence relation of the computational events
that must occur in order to satisly a timing constraint. The
nodes and edges of a task graph denote respectively the exe-
cution of the corresponding functional elements and
transmission of data in the communication graph.) The com-
putation time of a timing constraint (C,p,d) is the sum of all
the weights of the nodes in C.

The set of timing constraints T is composed of two
non-intersecting subsets: T and Ta' If a timing constraint
(C,p,d) € T_, then it is invoked automatically every p time
units, starting from time = 0 (we say that the timing con-
straint is periodic). If (C,p,d) € T, then it can be invoked at
any integral time instant t with the provision that two suc-
cessive invocations of the same timing constraint must be at
least p time units apart (we say that the timing constraint is
asynchronous). If a timing constraint (C,p,d) is invoked at
time = t, then the task graph C must be executed in the
interval [t, t+d]. A task graph C is said to be ezecuted in a
time interval I if a subset S of the set of (instances of) func-
tional elements that have been executed in I forms a partial
order such that: (1) There is a bijective mapping between
the functional elements in S and C; (2) Under this mapping,
the partial order S is consistent with the acyclic graph C; (3)
In the case where the functional elements are physically dis-
tributed and the graph C has an edge from a node u to
another node v, then an execution of C must include the
transmission of the latest output of the functional element u
to the functional element v before the corresponding instance
of v is executed in the time interval I. Furthermore, we
require real-time computacion to be pipeline-ordered in the
sense that: (1) Two executions of a functional element must
have distinct start-times and that the execution which has
an ecarlier start-time must also finish earlier than the other;
and (2) Two data transmissions from a functional element u
to another functional element v must be sent at distinct
instants at the site of u and the earlier transmission must
also be received earlier «t the sice of v.

Example Design Requirements Specification
Figure 1 is the block diagram of an automatic control

theoretical models of distributed computation. The semantic gap
between process-based models and the hard-real-time environment
is, however, too serious to be ignored.




system. This control system has three inputs x, y, z and a
single output u. There are five functional elements: fx, TY,
fZ' I'S and fK. The functional element I'S has two outputs
one of which is fed back via fK to itsell so that u is a func-
tion of x’, y’, z’ and its own previous value. The other out-
put is to the external environment and has the same value.
For brevity, we use the same name, u to denote the two out-
puts. The computation times of the five functions are
assumed to be bounded and their maximum values are

respectively °x Gy g Cg and oK

The design objectives of this system can be stated informally
in terms of the computation required by two periodic and
one asynchronous timing constraints as follows. The input x
is to be sampled at the regular rate of l/px cycles per
second. (Sampling rates are determined by the dynamics of
the physical process under control.) The output u must be
recomputed by executing the function fS with the new value
of x” and recent ‘values of y’, 2’ and v (to be determined by
their individual update rates). The internal state v must
then be updated by executing fK with the new value of u.
The input y is to be sampled at a rate of l/py cycles per
second and the variables u and v must be likewise recom-
puted. The input z is a boolean signal, i.e., z € {0,1}, and
can change state asynchronously. When a state transition
occurs, the new value of z must be detected and a new z’
computed by executing fZ. The output signal u must also be
recomputed by fs within dz time units. The input z is
assumed to change state very infrequently compared with Py
and Py

A physical interpretation of this block diagram is to
regard fx and fY as the preprocessors of signals from two
sensors measuring the physical quantities x and y one of
which changes much more slowly than the other, hence the
different sampling rates. The signal z can be regarded as the
output from a toggle switch and u is the control signal to an
actuator. The signal u is also used to compute an internal
state to be used in subsequent calculations, e.g., fK may be a
state estimator in a compensator. fs is used to determine the
output from the inputs x and y and the internal state. The
variable z’ may be a parameter which selects a different
mapping for fS depending on the operating regime selected
by a human operator via the toggle switch z.

Figure 2 shows an instance of our graph-based model
which defines the design requirements of the example control
system. It should be emphasized that the requirements
specification language employed by the end user is of only
secondary importance in so far as it permits a precise trans-
lation of user requirements into an instance of our graph-

based model. Otherwise, it should be as natural as possible

to the application domain, e.g., an avionics engineer may
want to use a specification language such as the one devised

by Parnas et al [HENI 80], and a robotics engineer may want
to use an entirely different. language to express the motion of
a robot arm. The domain- specific nature of our model should
make the translation fr.m end user requirements to an
instance of our model rel: tively straightforward.

Synthesis Techniques

A straightforward way to implement an instance of our
graph-based model is to map each periodic/asynchronous
timing constraint (C,p,d) into a periodic/asynchronous (i.e.,
demand driven) process T’ where the body of T’ consists of a
straight-line program which is any topological sort of the
operations in the task graph C. The computation time ¢ of
the process T’ is then the computation time of C. In order to
enforce pipeline ordering, we create a monitor [HOAR 74| for
each functional element that occurs in two or more timing
constraints. To improve efliciency, we can reduce the size of
critical sections by software pipelining, i.e., decomposing a
functional element into a chain of sub-functions each of
which has the same computation time. (We now see one of
the virtues of the graph-based model: all the data dependen-
cies are made explicit and hence software pipelining can be
easily automated.) The scheduling results for process-based
models, e.g., [MOK 83] can now be applied to implement the
resulting set of processes. However, this approach is
inefficient since it does not take advantage of operations that
are common to two or more timing constraints. For
example, if Py is equal to p_ in the example control system,
then there is no reason why fS should be executed twice per
period. In the process model, there are two distinct calls to
fs and so the redundant work cannot be avoided. We intro-
duce the latency scheduling technique for meeting asynchro-
nous timing constraints which can take advantage of opera-
tions common to two or more task graphs. The latency
scheduling technique is formulated in terms of the graph-
based model as follows.

Let M = (G,T) be a graph-based model. An execution
trace of a processor is a mapping F from the non-negative
integers to V U {¢} where V is the set of functional elements
in G and the symbol ¢ denotes an idle interval. F(i) = u if
the functional element u is being executed on the processor
in the time interval [i,i+1]; F(i) = ¢ if the processor idles in
[Li+1]. An execution trace F is said to have a latency of k
time units with respect to a timing constraint (Cpd) il F
contains an execution of C in any time interval of length >
k.

A static schedule is a finite string of symbols in V U
{¢}. A static schedule L is said to have a latency of k time
units with respect to the timing constraint (C,p,d) iff the
execution trace which a round-robin scheduler generates by
repeating L ad infinitum has a latency of k time units with
respect to (C,p,d). A static schedule L is said to be feasible




with respect to a set of asynchronous timing constraints Ta
iff L has a latency of d time units with respect to every tim-
ing constraint (C,p,d) € T,. Obviously, if we can compute a
feasible static schedule, we can construct a run-time
scheduler guaranteed to meet the given performance require-
ments.

The following are the key results for computing a feasi-
ble static schedule for a graph-based model (G, T) where T
= { }, i.e,, all the timing constraints arc asynchronous. The
same results hold with minor modifications if Tp 7% { }.

Theorem

If there is an execution trace F which has latency d
with respect to every asynchronous timing constraint (C,p,d)
in a graph-based model (G,T), then there must be a feasible
static schedule (finite by definition) with respect to T.

This result shows that feasible static schedules can
always be computed in finite time. The proof is by means of
an appropriately constructed finite simulation game.

Theorem

The problem of determining whether a feasible static

schedule exists for a graph-based model (G,T) is NP-hard in
the strong sense for the following two restricted cases:
(i) All the functional elements in G have unit computation
time and all the task graphs in T are chains of length 1 or 3.
(ii) Every task graph in T consists of a single operation; all
but one of the deadlines are the same and the functional ele-
ments cannot be pipelined into chains of sub-functions.

Proofs are respectively reduction from 3-partition and
cyclic ordering [GAR & JOH 79].

In general, we can employ a good heuristic algorithm
which first computes a static schedule to satisfy the periodic
timing constraints and then incorporates additional opera-
tions to satisfy the asynchronous timing constraints. Good
heuristics are available, e.g., we can provide a lower bound
on the performance of heuristic algorithms.

Theorem

Let Wi di be the computation time and deadline of the
ith timing constraint. If (i) & wi/d; < 1/2; and (ii) ldi/2] >
w;; and (iii) all the functional elements can be pipelined, then
a feasible static schedule always exists.

Even though optimal static schedules are hard to com-
pute in general, it should be emphasized that the run-time
scheduler is very eflicient once a feasible static schedule has
been found off-line.

We have also taken care in formulating the graph-based

model such that for a multiprocessor architecture, the syn-
thesis problem can be decomposed into a set of single proces-
sor synthesis problems and a similar-looking problem for

scheduling the communication network. We shall report this
work in another paper.

Conclusion

In spite of the rapid advance in hardware technology,
processor power is still at a premium and will probably
remain so for many real-time applications with the result
that software for these applications needs to be highly
optimized. We cannot expect to see substantial improvement
in software productivity as long as we rely on manual efforts
to fine-tune a system. In this paper, we have presented a
concrete design methodology which can substantially auto-
mate the design and maintenance of real-time systems to
meet critical performance constraints. The practicality of our
methodology is partially demonstrated by the successful
completion of the very high level language CONSORT.
Learning from our experience with CONSORT, we are
currently developing a more advanced design system for
hard-real-time systems.

We have just embarked on a wide area of research. Our
graph-based model provides a formal framework to investi
gate issues in real-time system design which often involve
many parallel activities together with stringent timing con-
straints. There are also other interesting problems that can
be formulated in terms of our model. For example, we can
pose the problems of maintaining the logical integrity of
real-time systems in terms of relations on the data values
that are being passed along the edges of the communication
graph of our model and devise more domain-specific fault-
tolerance techniques. Another direction of research is to syn-

thesize  complete hardware-software

systems  from
specifications based on our model by taking advantage of vlsi
technology, such as along the line of the system compiler
project of [DAS et al 83].
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Formulation and Programming of Parallel Computations:
A Unified Approach
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ABSTRACT

A graph model of parallel computations is sketched. The
critical properties of the graph model are clean separation of
computations from dependency relations and effective
hierarchical structuring. The former property leads to a high
degree of architectural independence for computations
formulated in this model. The latter property unifies and
integrates design and programming. The representation
capability of this basis is shown by illustration to cover most
popular models of parallel computation. Extension of the
computation graph model across levels of abstraction from
applications to chip level hardware is proposed.

INTRODUCTION

This paper presents a framework for formulation and
representation of parallel computations. A parallel
computation is defined as a sequence of programs for abstract
machines  which  realizes with increasing resolution
programmable representations of a model of parallel
computation. A program is a directed graph where the nodes
represent the binding of operations to data and the arcs
represent dependency relations between schedulable units of
computation. A critical property of the graph model of
computations proposed here is a clear separation between the
actual computations and the dependency relations between
them which define the structure of a computation expressed
in a given set of data types and operations upon instances of
the types. This clean separation allows the computations and
the dependencies to be separately bound to a target
architecture. It also giver a degree of independence from the
implementation of dependency mechanisms in hardware.
Finally, it provides, through appropriate choice of
dependency protocols, a unified approach to parallel
computations. This representation basis can define programs
for abstract machines over a range of resolution of detail
from very abstract to realized hardware. This representation
basis gives a unified framework for mapping from abstract
specifications to hardware realized machines down to the
level of physical device layout.

This basis can, at an appropriate level of abstraction,
represent most well-known methodologies for formulation of
parallel computations. Examples are given in Section 4
Programs prepared in the representation basis will be shown
to have a high degree of architectural independence.
Representation of computations as directed graph models has
been an important thread in the development of the theory of
parallel computation. A partial list of significant papers
includes [KAR66, KAR69, ADA68, EST63, MAR69, ROD69,
PET62]. The use here of graphs is operational rather than
theoretical or analytical. The purpose of the graph model

0190-3918/85/0000/0624$01.00 © 1985 IEEE

defined and described herein is to support formulation and
programming. This is, again, not entirely novel. Keller and
Davis [KEL81, DAVS81] have proposed graphical
programming languages for data flow programs. Dependency
graphs are the basis for compiler optimization [KUCS8I,
COC72] and recognition of parallelism in programs [KUC77|.
There have recently been more general studies of dependency
graphs as a basis for general program transformations
[FER83|.  Visual programming, sometimes employing a
graphical basis, is now a popular research subject [REI84,
RUB85, WORS83|. The paradigm for program development
described herein also owes debts to the literature of
automatic programming [BAR79, KAN81, WALS82|.

The next section defines and describes models of parallel
computation. The section "Abstract Machines and Their
Programs" defines realizations of models of computation and
hierarchical sequences of abstract machines. "Computation
Graphs"  describes the graphical representation of
computation structures (programs for abstract machines)
which we propose. The section "Example Representations"
illustrates representation of several well-known computation
methodologies in  abstract terms in the graphical
representation. The section "Algorithms to Architecture®
sketches the use of the computation graph model as a
framework for design and specification of architectures or
elements of architecture. “Computation Graphs as a
Programming System" gives advantages of application of the
computation graph model as a programming system.

The results reported will make it clear that the
development of these concepts is at an early stage. This
early report gives only a brief introduction to the properties
of the model. We have already found practical results in the
assistance these concepts offered to the coordinated
implementation of two programming languages for parallel
computations which utilize task level schedulable units of
computation, one of which uses an explicit procedural
specification of parallelism and the other of which uses an
implicit specification of parallelism.

MODELS OF PARALLEL COMPUTATION

A model of computation is a conceptual specification of the
following elements:

1. Primitive data types and operations on these data
types

2. Rules for composing schedulable computations
from primitive operators and data types and
definition of the state of a schedulable unit of
computation.
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3. Procedures for constructing the name spaces in
which the schedulable computation structures
execute and for the binding of values to names

4. Representations for dependency relations between
schedulable units of computation. The
representations may include:

a. Mode and granularity of synchronization
between schedulable units of computation

b. Constraint relations for the execution of
schedulable units of computation

c. Topology, mode and type specification for
the units of information which are the basis
of communication between schedulable units
of computation

d. Functional relationships between the set of
dependency relations which complete the
definition" of the initial state of a
schedulable unit of computation.

Bindings of operators to type instances are the elementary
units from which a computation is constructed. Sets of
operator/type instance bindings may be composed into units
for which state is maintained. A schedulable unit of
computation has a set of initial states, a set of final states
and a sequence of active states. A name space is the set of
objects reachable by a schedulable unit of computation.
Binding of values to names defines the state of a schedulable
computation. A schedulable unit of computation can be
executed whenever it reaches an initial state. Dependency
relations are defined between schedulable computations.

Schedulable units of computation must, in general, be
executed in some constrained or specific sequence in order to
implement a meaningful computation. Synchronization and
sequencing dependencies specify  ordering relationships
between the  schedulable units  of  computation.
Synchronization mechanisms are defined by mode and
granularity. Constraint relationships such as mutual
exclusion for access to a named object by schedulable units of
computation are commonly required.

Communication mechanisms are used to implement data
dependencies. Communication mechanisms move information
between name spaces associated with schedulable units of
computation. A communication mechanism is characterized
by a topology of connection, a protocol for initiation and
termination of a binding mode (circuit or packet) for the
resolution of names and a granularity of data transfer.

The selection of conceptual elements for a model of parallel
computation determines the capabilities of the abstract
machine which realizes the elements of the model of
computation in programmable form.

ABSTRACT MACHINES AND THEIR PROGRAMS

An abstract machine is a realization of a model of parallel
computation as a programmable machine. A program is a set
of operator/type instance pair bindings composed into
schedulable units which are ordered by dependency relations.

An abstract machine may realize different elements of a
model of parallel computation at different levels of
abstraction. For example, data types and operators may be
resolved to a fine granularity and have precise specification of
the semantics of each operator on its type instances while
leaving dependency relation definitions at a high level of
abstraction.

“The initial’ formulation of a computation will begin by
selection of a model of computation, definition of a high level
abstract machine and preparation of a program for this high
level abstract machine. The elements of the model of
computation and their realization in the abstract machine
may be application oriented. There may or may not be a
realized machine which can execute programs in this first
abstract machine. If not, then the program must be mapped
by one or more transformations to an abstract machine for
which there exists a realized machine which can execute
programs. A program expressing the computation in the
initial abstract machine will, for execution, be successively
mapped between pairs of abstract machines until a program
for a realized machine is obtained. It may be convenient to
define several abstract machines which realize different
degrees of resolution between an initial high level abstract
machine and a realized machine which has desired execution
properties. A given abstract machine may be realized by
simulation on another machine, or by hardware, or by any
mixture of realization modes. Coherence of definition of the
sequence of abstract machines through use of compatible
models of computation should ease the tasks of mapping
between programs for the sequence of abstract machines.

The preceding discussion is a (rather pretentious!)
description of the process of programming, compilation,
linking and loading which is the mode by which informal or
mathematical specification of computations is turned into
executable programs on hardware realized machines.
Definition of a sequence of abstract machines and mappings
which yield efficient programs on hardware realized machines
is difficult even for sequential computations. It has not yet
been widely attained for vector architectures and will be even
more difficult for parallel architectures due to the complexity
added by inclusion of general dependency relations in parallel
models of computation. It is even more important for
parallel computations to ease the task of generating effective
mappings by use of a coherent framework for the definition
of the sequence of abstract machines leading from

specification level programs on unrealizable machines to
executable programs on hardware realized machines. The
next section describes how computation graph models of
programs may be an effective framework for resolution from
specification to execution.




COMPUTATION GRAPHS

A computation graph is a program for some conceptual
computation in terms of the operations of an abstract
machine. It is a directed graph where the nodes represent
schedulable units of computation and arcs represent
dependzncy relationships between source and sink pairs.
Execution of the computation is attained by traversal of the
directed graph along the paths defined by the dependency
relations associated with the arcs. It is only the binding of
operators to type instances which is always associated with a
node. The program defining the schedulable unit of
computation and the type instances may either or both arrive
as values on arcs or else be permanently bound to a node. A
node is therefore an abstraction for execution on a processor
and memory. An arc is an abstract representation of a
communication channel which may include memory or
execution of a synchronization protocol. The initial abstract
machine will normally have a processor for every schedulable
unit of computation and sufficient channels and control lines
coupling the processors so that each dependency relation can
be assigned its own set of resources.

One  critical property of the computation graph
representation of programs for abstract machines is its
natural implementation of hierarchical resolution. Any

computation can, at » sufficiently high level of abstraction,
be defined as a single schedulable unit of computation with
inputs and outputs. Resolution of the computation to
greater detail is obtained by replacing a node by a subgraph.
Each element in the grzph can be defined with greater or

lesser detail.

A second critical property of the graph model is its clean
separation of computations and dependency relations. This
clean separation allows each to be separately resolved and
mapped. It enhances portability by allowing the portion of a
code mosy likely to vary between parallel architectures to be
retained in an abstract form as long as possible.

The third critical property is the declarative form of
expression for dependency relations. This declarative form is
also a critical element in portability since only the logical
properties of the dependencies are specified, not how they are
to be implemented. This graphical programming form can be
envisioned as a vehicle for functional programming with
much more flexible provision for specification of dependency
relations.

There have been several studies of the equivalence of
different forms of dependency relations. Allen, et al [ALL83]
have discussed the equivalence and conversion of control
dependency to data dependence. Pingali and Arvind [PIN84]
have analyzed equivalence between data and demand driven
data flow modes of computation.

The next paragraphs sketch in abstract terms a
computation graph basis which covers and integrates most of
the common formulations for parallel computations. The
definitions are given only with detail enough to coverage of
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and  differentiation among the parallel
methodologies discussed in Section 4. A detailed specification
of the syntax and semantics of the proposed computation
graph language with examples is given separately [BROSs).
Space limitations preclude ful] definition here. The model] as
specified generates hypergraphs including cycles [BERGZ].

programming

Each schedulable unit of com
which
representation.

putation has a unique name
may include indexes to facilitate compactness of
Each schedulable unit of computation has at
least one initial state, a sequence of active states and at least
one final state. An initial state is defined by the persistent
internal state (if any) of the schedulable unit and by the
binding of values from one or more input arcs to the
uninitialized names of the schedulable unit of computation.
The final states of the computation must include the
assignment of values (possibly null) to the output arcs. A
dependency relationship is either a synchronization
relationship between schedulable units of computation or a
producer/consumer relationship.  There are two types of
synchronization relationships, those which specifly an ordering
between execution of schedulable units of execution and those
which specify only that some set of schedulable units of
computation cannot execute simultaneously.  This latter
constraint condition is represented by a coupled arc loop.
Only one of a set of nodes connected by such arcs can be
simultaneously active. Arc loops defining dependencies to be
implemented by mutual exclusion protocols must have the
data name as an attribute. Sets of arcs entering or leaving a
given node may be joined by either “and" or or®
conditions. There are special nodes called source nodes which

are external to the computation and generate the type
occurrence values which determine the initial state for
schedulable units of computation bindings that do not have

predecessors. Arcs from source nodes are input arcs. There
is no assumption in this model that the objects which
traverse arcs are data objects. They may be data objects,
operator objects, composite operator/data objects or control
signals. Each arc has a unique name (which may be indexed)
and carries a set of attributes. The attributes include
specification of the type of the dependency (an example
migki be data driven data flow or procedure call) and, if data
flows on the arc, the unique name of each data item.
Attributes may be assigned globally (or to subgraphs). An
example is a specification that all dependencies in a given
subgraph are packet-type messages. Arcs without sink nodes
carry the result of the computation.

A computation graph need not be static. A possible result
of an operator/data binding at a node is the creation of a
new arc, a new node or an entire subgraph. A node can
always be replaced by a subgraph, provided that the
dependency relations map properly. Mapping of dependency
relations is by name matching.

A program is conceptually executed and a computation is
evaluated by satisfaction of the input dependency relations
and traversal of the paths through the graph which originate
in source nodes and terminate on the output arcs. Actual
evaluation requires apping of the computation graph to an
executable machine (which may require the addition of




further arcs to the graph) and traversal of the graph in its
mapped form.

An example may help in clarifying application of this
representation to actual programming. A computation may,
for example, be specified in terms of schedulable units of
computation which can be realized as procedures in a higher
level programming language such as Pascal or Ada and
dependency relations between these schedulable units. The
dependency relations may be of several types including some
specific order for the reading of external inputs such as
sensors or data dependencies such as the outputs of one
procedure being inputs of other procedures. The schedulable
units of computation are resolved by being written as Pascal
procedures with appropriate encapsulation to implement
interaction with the protocols which implement dependency
relations. The dependency relations may be resolved to
message or shared memory synchronization operators
depending on which is provided at the next lower abstract
machine. If the final carget machine is Pascal and UNIX,
then the procedures implementing the schedulable units of
computation would be encapsulated as UNIX processes and
the  dependencies  programmed as PIPES  and/or
SIGNAL/WAIT commands. The computation could
straightforwardly be ported to another execution
environment provided the protocols for implementing
dependency relations have been implemented in the
environment.

Programs utilizing hardware, operating system and
language run-time system realized target machines are
representable in this graph model. Schedulable units of
computation are mapped to processors and memories.
Dependencies are mapped to logical or physical channels or to
synchronization operator/type instance pairs. The difficulty
in this final step of mapping from abstract machine to
executable machine is that we now lose freedom to specify
arbitrary numbers of processors, etc. It will commonly be the
case that the abstract computation graph will have many
more nodes than the graph of the realized architecture since
the nodes of the architecture are processors. It is generally
necessary (and desirable) to map many nodes of the abstract
computation graph to a processor node of the abstract
machine graph. An optimal mapping will minimize total

execution time of the computation. This requires
simultaneous minimization of time spent satisfying
dependency relations with maximum parallelism. These

optimizations are difficult to formulate and optimal solutions
are frequently of exponential complexity. There are,
however, many Leuristics from graph theory which have
promise. It is important to note that optimizations can be
applied to programs for high level machines where the nodes
may have problem-oriented semantics which can assist the
optimiz- tion algorithm.

EXAMPLE REPRESENTATIONS

This section describes informally how several well-known
methodologies for parallel computation are represented in the
computation graph basis.

Data Flow

Data flow models of computation [DEN72, KEL82] have
always used a graphical representation. The additional levels
of abstraction in the computation graphs defined preceding
allow for integration of the sub-cases of data flow models of
computation. The principal parameters in data flow models
of computation are granularity of unit of computation,
data/demand control, token/stream representations of data
and static or dynamic graph structure.

Demand-driven or data-driven data flow programs are both
defined by selecting the data types and operators for the
abstract machine and an appropriate protocol for data flow
control. ~ An instruction level data flow computation is
defined by a program in an abstract machine where the
operators and types are instructions at the level of “floating
point multiply on pairs of real numbers,* etec. The
communication mechanisms are packet movement operators
which transfer data from source nodes to sink nodes.

Specific models of data flow computation are obtained by
definition of the protocols which implement the dependency
relations. The sequence of operations in the demand-driven
model of computation is that the sink node requests data
from the source node and the source node responds. A data-
driven methodology employs a communication protocol where
source nodes send results to sink nodes and perhaps await
acknowledgement of result arrival or use. In each case the
functions are embedded in the nodes and data objects are
carried on the arcs. The computation graph model integrates
demand - and data-driven control since the protocol for each
arc can be separately specified. Note that a computation
graph node can have some arcs using a data-driven protocol
and some arcs using a demand-driven protocol provided the
schedulable wunit of computation is defined with the
appropriate set of initial and final states. The Eazyflow
[JAG84] and Rediflow [(KEL84] data flow models of
computation both incorporate this capability.

Functional Programming Languages

A functional programming language such as SASL or KPC
[TUR81] can be viewed as a set of equations where the
dependency relations are determined by the occurrence of
variables on the left and right hand sides of function
definitions.  These languages define static computation

graphs where the nodes are the evaluation of the right hand
side of the equations and arcs are producer-consumer

relationships carrying results of function evaluations.
Functional programming languages typically do not specify
modes of data movement so that the specification of thess
operators can be deferred until vuc graph i mapped to a
realized machine for execution.

Object-Oriented and/or Distributed Programming

Consider a computation graph where each function is
implemented by a type manager which also stores the




occurrences of the objects it creates and implements
concurrency control on access to the instances of its type. In
this object-oriented style both state data and functions are
permanently stored at nodes. The objects which traverse the
arc are control signals and parameters for (and results from)
the functions implemented by the type managers. This
representation is or. commonly discussed in models of
distributed computation.

Procedural Programming

To represent procedural programming in this graphical
framework we separate actual computations from sequencing
and communication operators. The control statements in a
procedural programming language can be seen to specify a
traversal of the computation graph where the nodes are the
actual computations and the sequencing and communication
operations of the procedural language program define and
implement the arcs of the graph. The Computation
Structures Programming Language (CSL) [BRO82| defined
for the Texas Reconfigurable Array Computer (TRAC)
[SEJRO] is an example of a parallel language which
procedurally implements this graphical representation of
parallel computations.

Process/Transaction Model of Programming

The concept of processes originated in structuring of
operating systems for concurrent execution of the internal
computations necessary to implement multiprogramming on
a single CPU. The transaction concept of dividing the
actions of a process into units which do not interact with
other processes was implicit in the mutual exclusion
mechanisms of early operating systems theory and has been
extended and formalized in the context of both operating
systems and data bases. One popular approach to
structuring of parallel computations which derives from this
origin is to construct a set of processes composed of a
sequence of transactions (straight-line graphs) and to
complete the definition of the computation by introducing
synchronization and/or communication actions between the
processes. State is maintained for processes and transactions.
A transaction is the smallest schedulable unit of
computation. Dependency relations within a process are
sequential. Dependencies between processes are implemented
as interprocess interactions. The introduction of the
interprocess interactions can be seen to create a computation
graph where the arcs are of two types, sequencing within
processes arnd interprceess interactions. (Each straight-line
segment may have its own internal state extending across its
nodes if the computations are not entirely enclosed in
transactions). The equivalent graph will be obtained in the

computation  graph representation by choosing the
transactions as  schedulable wunits of computations
(incorporating the code surrounding transactions as

appropriate) and partitioning the resulting graph into
straight line segments. Formulating the computation in the
graph representation may call attention to partitionings into
processes which would not be straightforwardly encountered

by direct composition. The graph representation offers a
basis for analysis not easily extracted from the interacting
processes basis. It seems to us that the computation graph
approach is the more fundamental and, indeed, more likely to
lead to an efficient computation structure.

Distributed Data Bases

The convention that data remains at nodes and that
functions move along the arcs, perhaps with parameters, is a
model which has been proposed for distributed data base

systems.

FROM ALGORITHMS TO ARCHITECTURES

The importance of special purpose algorithmically specific
architectures will grow as their development is eased by
"silicon compilers®. The computation graph model is a
natural front-end for silicon compilers.

The computation graph model can be used to define
desirable abstract machines for the execution of given
computations as well as to ease mapping from problem-
oriented abstract machines to realized architectures. It is
possible, in principle, to realize an abstract machine which
directly implements the abstract machine defined by the
schedulable units of computation and dependency relations of
a given computation graph. There are a substantial class of
computations where near direct realizations of computation
graphs are possible. These cases include matrix operations,
convolutions, etc. Chen [CHES4] defines a desirable two-
dimensional systolic array architecture for all operations
expressible as linear recurrences from a representation closely
related to the computation graph defined herein. The
processors of target abstract machines need not be
homogeneous. The computation graph formulation may
suggest syntheses of architectures as a collection of special
purpose computation units coupled by a problem-dependent
topology.

PROGRAMMING WITH COMPUTATION GRAPHS

Computation graphs are expressible in an abstract data
type format. The specification follows.

1. Nodes, arcs, and uninterpreted graphs are
parameterized primitive types. The properties of
these types are described by a set of generic
functions such as:

n:= create-node (name)
node n with name “name*

create

g:= replace (g’,n) .. replace node “n*
with graph “g*

2. There are constructed types which result from
specification of a context for the execution of the
generic

functions and specification of type




dependent functions. A context is a specification
of a model of parallel computation and a mapping
of names to schedulable units of computation,
subgraphs or protocols for realization of
dependency relations. Constructed types define a
class of programs.

3. Each primitive type has an attribute template.
The attribute template for a primitive type may
vary with the context.

B

It will usually be the case that the target
language of the mapping in one context is the
source language for the mapping in another
context with an increased level of resolution of
detail.

The example in Section 4 of task level data flow
formulated in UNIX would have arcs of type data
with the attribute “pipes* specifying the protocol
for flow of data between the schedulable units of
computation.

5. A given graph is an occurrence of some
constructed type. Each occurrence is a multi-
version object in the definition of Reed [REES3]|.

Programming with computation graphs (preparation of an
occurrence of a constructed type) proceeds as follows:

1. Nodes are created for each schedulable unit of

computation at the initial level of abstract
machine.
2. The structure of the graph is created by

specification of the dependency relations between
the schedulable units of computation.

3. The definition of each node and arc is completed
by specification of its attribute set.

4. The replacements and ty pe-specific
transformation which create the next level of
resolution of detail are executed.

The eventual result of this sequence of transformations
through constructed types is a program which can be
compiled for execution on a realized machine.

ASSESSMENT OF POTENTIAL ADVANTAGES

The abstract machine computation graph representation
provides a basis for parallel programming which integrates
many parallel programming methodologies and is, at high
levels of abstraction, independent of the characteristics of the
eventual target architecture. Integration is based on the
recognition that the differences in parallel programming
methodologies can be isolated to specification of dependency

relations  between schedulable units of computation.

Architectural independence is again based on the clean
separation of computations and dependency relations upon its

breadth of representation of dependency relations. The
differences between parallel architectures are primarily in
their realization of dependency relations. Dependency
relations are declaratively specified which facilitates separate
resolution and compilation. Incremental resolutions of high
level designs to executable forms is aided by the fact that
each node and each arc in each graph has a specific type of
semantics which can be wused to define automated
transformations to assist in the resolution from abstract to
realized machines. These semantics also provide a natural
interface to a library of schedulable units of computation. It
is a framework for the evaluation of existing programs
toward parallel structuring since modules from existing
programs can be encapsulated to obtain a first level of
schedulable units of execution. The graph basis is a natural
interface for visual programming. There are many
advantages in this paradigm for parallel programming.

1. It is intrinsically visual and should aid in

conceptual formulations.

2. It is a natural structure for hierarchical resolution
of computations and thus gives the programmer
powerful concepts for managing complexity.

3. It gives a framework for default specification of
common properties of objects.

4. It is a framework for definition of meta-operators
which act upon the graph to transform it to
executable forms.

5. It admits of use of arbitrary levels of granularity
of data structures and operators and also different
levels of granularity within a given graph.

6. Programs constructed in such a methodology
would be extremely portable between parallel
architectures since resolution of communication
and synchronization operators can be deferred
until a final target architecture is selected.

7. The clear identification of computations and the
interactions between computations will enhance
re-useability of computation units and assist in
program validation and maintenance.
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Synthesizing Distributed and Parallel Programs
through Optimistic Transformations
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Abstract

We propose a programming methodology for synthesizing effi-
cient distributed and parallel implementations of serial programs
by applying correctness preserving program transformations.

We introduce one particular family of such program transf-
ormations called optimistic transformations. Optimistic transf-
ormations allow a logically serial sequence of computations C1;
C2 to be executed in parallel whenever C1's effect on C2 can be
guessed in advance with high probability. If the guess is wrong,
C2 will have to be undone, but if the probability of a correct guess
is sufficiently high, the losses due to undoing computations will
be compensated by performance gains due to increased
parallelism.

We give three examples of “‘guesses™ which lead to optimistic
transformations of practical value: (a) the guess that multiple it-
erations of a loop will not conflict, (b) the guess that exceptional
program conditions will not occur, and (c) the guess that machine
failures will not occur.

We demonstrate the practicality of our approach by synthesizing
a distributed version of a transaction processing program from a
serial program to which we apply first a data distribution trans-
formation, and then three optimistic transformations based upon
the three guesses illustrated above. The distributed transaction
processing program synthesized in this way is shown to be an
improved response-time version of the classical distributed two-
phase commit protocol.

1.0 Introduction

A programming language presents programmers with a certain
computation model. The simpler and more abstract the compu-
tation model, the easier it is for programmers to develop correct
algorithms and demonstrate that they meet their specifications.

Distributed data, concurrent computations on shared data, and
the possibility of hardware failures are all factors which compli-
cate the computation model. As a result, to invent a distributed
algorithm and prove it correct is still a difficult art.

We suggest that distributed programs can be designed more ef-
fectively by using a more abstract model of computation which
presents a "'single-system-image". In such a model, programs are
composed of modules, each of which ic a serial process with only
local data. Details of the underlying architecture, such as the
number of physical processors, the means of communication be-
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tween them, the degree of physical concurrency, and the exist-
ence of failures, are all hidden.

In order to realize such an abstract model, it is necessary to first
map the abstract model onto the available physical hardware, and
then to oprimize the resulting implementation by transforming it
into a behaviorally equivalent one which takes better advantage
of the hardware.

Some typical mappings include allocating logical processes to
physical processors, implementing inter-process communication
over shared memory or over physical links, masking processor
failures by checkpointing onto stable storage, etc.

Some typical optimizations for distributed systems include: rep-
licating data to reduce communication delays, retaining copies of
stable storage data in main memory, performing subactions of a
serial program in parallel, etc.

Individual mappings and optimizations can be tailored to partic-
ular hardware, particular performance objectives, and particular
usage patterns. These mappings can be analyzed for both cor-
rectness and performance properties independent of programs to
which they may eventually be applied. Such mappings could be
maintained in a library which would be available to compilers for
the high-level language.

Using this approach, programmers specify the lcgic of their pro-
gram in the high-level language without incorporating into these
programs any decisions about implementation strategies. Pro-
grammers then improve efficiency by selecting appropriate map-
pings and optimization transformations from the library to be
applied to the original program. For example, the designer of a
distributed operating system would not design a distributed file
system, a distributed mail server, a recoverable transaction-
system, etc., Instead, he would design a file server, a mail server
and a transaction system, assuming a fully reliable "single-
system-image'. These programs would then be converted to their
distributed realizations by the appropriate set of mappings and
optimizations.

Our conjecture is that it will be easier to design distributed algo-
rithms by beginning with correct algorithms written in the single-
systems-image model and then applying reusable implementation
mappings and optimizations, than to complicate the computation
model and require programmers to construct distributed algo-
rithms de novo.




In carlicr papers, we suggested particular strategies for embed-
ding concurrency control [STR &3] and recovery [STR 84b] be-
low the level of the source programming language, which would
then not need to directly control shared data, locking, aborting,
or processor assignment. Here, we introduce a general class of
semantics-preserving program transformations called oprimistic
transformations that increase the degree of concurrency within a
distributed system by reducing synchronization.

We first describe the general principles underlying optimistic
transformations. We then give examples of several optimistic
transformations and apply these transformations to a particular
scrial program — a database "transaction-processing' program.
The original program has only local data (the data of the data-
base), no communication, and is completely serial, while the
transformed program, implemented on a network of computers,
has both shared and distributed data, internal parallelism, and a
communication protocol between sites very similar to the classical
“two-phase commit™ protocol, but with improved response time.

The example will demonstrate that program transformations, and
in particular optimistic transformations, can be used to synthesize
known implementation strategies, as well as provide a systematic
approach to the development of new distributed systems.

2.0 Optimistic Program Transformations

2.1  Computation model

Our starting point will be a high-level programming language such
as NIL [STR 83], which composes large systems from modules.
Each module executes a serial program, has only local (private)
data, and communicates with other modules only by message
passing. There is no data sharing. Module boundaries are deter-
mined solely on the basis of software engineering principles such
as low inter-module coupling, abstraction and information hiding.
The language does not allow specifying any performance-related
or implementation-dependent decisions since these decisions
typically restrict the ability to apply program transformations.
Our results apply equally well to other high-level programming
languages which forbid data sharing and do not support specifying
implementation-dependent and performance-related decisions.

The low-level language into which we map our programs reflects
a computation model which includes multiple processor sites,
multi-programming at each site, physical links connecting be-
tween sites, and stable storage to backup the volatile storage at
each site.

To implement a program written in the high-level language, it is
first translated into the lower level language and then optimized
by applying program transformations.

Optimistic program transformations convert a set of serially
scheduled computations into an equivalent computation in which
compulations are scheduled in parallel.

2.2 Optimistic schedules

Given a sequence of computations, an optimistic schedule allows
several logically serial computations to execute in parallel. The
increased parallelism is obtained by scheduling a computation C,
even before computations C,, (k < n) preceding it in the serial
sequence have terminated, whenever it is possible to "guess' the
effect of the preceding computations (e.g. their results or the
values that they write) with a high probability of correctness.

Provided we maintain the ability to undo the effects of optimis-
tically scheduled computations whenever the correspending
guesses prove incorrect, C, can be executed in parallel with the
preceding computations, by assuming they will have the guessed
effect, and undoing when guesses prove incorrect. The optimistic
schedule thus preserves the serial semant.zs, but allows compu-
tations which normally could not be scheduled until later to be
executed earlier, by eliminating the synchronization involved in
waiting for the earlier computations to terminate before schedul-
ing the later computations.

Whether or not optimistic scheduling is an improvement depends
upon the probability of successful guessing, the savings when the
guess is successful, the costs of undoing computations when the
guess is unsuccessful, and the fixed costs of making computations
undoable.

2.3 Examples of useful guesses
The following are examples of situations in which we can guess
the effect of computations with a high probability of correctness,
and therefore optimistic scheduling is likely to improve perform-
ance.
1. most likely value: consider the following statement:

if p(x) then f(y) end if;

If we know that p(x) is almost always true, we may start to
execute f(y) even before the computation of p(x) has com-

pleted.
2. no-conflict guess: consider the following two statement se-
quences:
Sequence A: Sequence B:
Al: ali] : = f(x); Bl: a[i] : = f(x);

A2:a[j]:= g(y) B2:z: = f(a[j])

Such statement sequences are said to conflict whenever con-
current execution (e.g., execution of Al concurrently with
A2) will have different results from execution in the pre-
scribed order. However, when i does not equal j, either of
these sequences could be executed concurrently without
conflict. Therefore, if we know that the probability of i being
equal to j is low, we may choose to execute the two state-
ments of a sequence concurrently.
3. no failures: consider the following statement:
y:= f(x);

If x is in volatile storage (storage lost upon a crash) and y is
in stable storage (storage that survives crashes), a crash
would cause y to become invalid since the value of x from
which it was computed would be Jost. One wauy to make sure
this does not happen is to log the value of x before computing
y. However, if crashes are very infrequent, we may guess that
the value of x will be written to stable storage before the next
crash, and thus use the volatile value to compute y. rather
than waiting for x to be made stable before computing y.

2.4 Implementing optimistic schedules

Optimistic schedules involve associating predicates called commir
guards with computations executed on the basis of guesses. A
predicate P is called a commit guard of an optimistically scheduled
computation C if whenever P is true, C will produce the same ef-
fect as it would had it been scheduled in its proper sequence. In-
tuitively, P implies that the guess was successful. Commit guards
must be monotonic, i.e., once a commit guard becomes true it




