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FOREWORD

.The increasing size and complexity of new structural forces in engineering have
made it necessary for designers to be aware of their dynamic behaviour. Dynamics
is a subject which has traditionally been poorly taught in most engineering
courses. This book was conceived as a way of providing engineers with a deeper
knowledge of dynamic analysis and of indicating to them how some of the new
vibrations problems can be solved. The authors start from basic principles

to end up with the latest random vibration applications. The book originated

in a week course given annually by the authors at the Computational Mechanics

Centre, Ashurst Lodge, Southampton, England. Special care was taken to ensure

continuity in the text and notations.

Southampton 1984
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CHAPTER 1

INTRODUCTION TO VIBRATION
by

G.B. Warburton

1. Introductory Remarks

In recent years the number of structures, for which the dynamic forces, likely to
be encountered in service, have required investigation at the design stage, has
increased. - Several factors have contributed to this increase: growth in size of
structures of various types; consequential increased importance of wind forces;
efforts to reduce the effects of earthquakes on structures and to prevent total
collapse; design of off-shore structures. Two important questions are: why is it
essential to include dynamic effects in structural analysis and why is this a more

difficult task than conventional (static) structural analysis?

Suppose that the stresses in a structure are known for: (a) a static force P at a
particular location; (b) a force at the same location that varies in magnitude with
time and has a m;ximum value of P. Then the dynamic magnification factor is the

- maximum stress at a point for (b) / the stress at the same point for (a). This
factor depends upon how the force varies with time, the distribution of stiffness
and mass in the structure and the damping present. In certain circumstances it will
be very large; in others very small. Obviously, if there is any possibility of the
dynamic magnification factor being significant;y greater than unity, a dynamic
analysis of the structure is necessary. This book is primarily concerned with
methods of determining dynamic magnification factors for various types of loads and
structures. However, no simple rules exist for these factors. Thus there are ‘
greater concéptual difficulties for dynamic problems than for comparable static
problems, as the intuition and experience, which help an engineer to form a reason-
able view of the safety of a structure under static forces, do not lead to an esti-
" mate of the relevant dynamic magnification factors. Also the time dependence of
stresses, displacements etc. and the necessity to include mass and damping effects
make dynamic analysis more complex than its static counterpar%. There are also
praétical difficulties; some dynamic loads, e.g. wind forces, and most damping

forces can only be estimated.

In addition to the possibility of elastic failure of a structure if dynamic effects
are neglected, long-time repetition of dynamic stresses, whose magnitudes would be
considered to be safe from static considerations, may lead to cumulative fatigue

failures.



In this chapter the concepts that are relevant to vibration analysis of structures
will be discussed briefly. Emphasis is on the response of structures to dynamic
forces and how different types of force time variation influence the choice of
method. Many of the concepts are introduced by considering the simplest vibrating
structure; then, as this simple structure has limited practical applications, gen-
eral structures are discussed. For these the normal mode method of determining
response is given particular attention, because it illustrates the physical behaviour
of structures better than other methods. Lastly dynamic interaction problems are
discussed; here interaction exists between the vibrations of a structure and those
of. the underlying soil or the surrounding fluid. Many current practical problems,

and also much current research effort, involve interaction effects.

Naturally in a single chapter the major topics of structural vibration can only be
mentioned. Most of these topics will be studied in depth in subsequent chapters.

It is hoped that their introduction here will illustrate their interrelationship and
show how they contribute to the determination. of stresses in complex structures

caused by various types of dynamic excitation.

2 Single Degree of Freedom Systems: Equation of Motion and Types of Problem

Although the dynamic response of a practiéal structuge will be complex, it is necess-
ary to begin our study by considering the fundamentals of:vibfation of simple systems.
A rough guide to the complexity of a dynamical system is the number of‘degrees of
freedom possessed by the system. This number is equal to the number of independent
coordinates required to specify completely the displacement of the system. For
instance, a rigid body constrained to move in the X Y plane requires three coord-
inates to specify its position completely - namely the linear displacements in the

X- and Y-directions and the angular rotation about the Z-axis (perpendicular to the
plane X Y); thus this body has three degrees of freedom. The displacement of an
elastic body, e.g. a beam, has to be specified at each point by using a continuous
equation so that an elastic body has an infinite number of degrees of freedom. 1In

a dynamical problem the number of modes of vibration iﬁ which a structure can respond
is equal to the number of degrees of fieedom, thus the simplest structure has only

one degree of freedom. *

Figure 1 shows the conventional representation of a system with one degree of free-
dom; it consists of a mass m constrained to move in the X-direction by frictionless
guides and restrained by the spring of stiffness k. It is assumed that the mass of
the spring is negligible compared to m. Thus the displacement of the system is
specified completely by x, the displacement of the mass, and the system has one
degree of freedom. For the purpose of analysing their dynamic response it is

possible to treat some simple structures as systems with one degree of* freedom.
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In the simple:frame of Figure 2 it is assumed that the horizontal member BC is rigid,
that the vertical members AB and CD have negligible mass compafed to that of BC, and
that in any swaying motion BC remains horizontal. Then the motion of the system is
given by the horizontal displacement of BC, x, and the frame can be treated as a
system with one degree of freedom. Equations and results derived fpr the system of

Figure 1 will be applicable to that of Figure 2.

The general equation of motion is derived by considering the forces acting on the
mass m of Figﬁre 1 at any time t. If the displacement of the massz X, is measured
from the position of static equilibrium, the gpavity force mg need not b; included
in the equation as it is balanced by the restoring force in the spring kxs where xs
is the static deflection of m and k is the stiffness of the spring or the force
required to produce unit deflection in the spring; it is assumed that the spring

is linear, i.e. k is a constant.

In any real system there will be some damping; this may take various forms, but here
viscous damping will be assumed, and thus the damping force is proportional to the
velocity %X and opposes the motion. (A dot over a symbol indicates differentiation
with respect to time; thus velocity dx/dt = % and acceleration dZ2x/dt? =X.)
Conventionally viscous damping is represented by the dashpot, shown in parallel

with the spring in Figure 1; in practice the damping force is caused by internal

friction in the spring etc. and thus is collinear with the spring force.

Newton's second law of motion is.applied to the system; this can be expressed as

the product of the mass and the resulting acceleration in the X-direction is equal
to the net applied force in the X-direction. For this system the latter has three
components, namely the applied force P(t), the restoring or spring force (-kx) and

the damping force (-cx). Thus the equation of motion is

mX = P(t) - kx - cx
or
mX + cx + kx = P(t) (1)

The solution of equation (1) gives the response of the mass to the applied force P(t).

Equation (1) represents also the motion of the member BC of the frame of Figure 2,
if m is the mass of BC, k is the combined stiffness of the stanchions AB and DC,
and it is assumed that a viscous damping force cx opposes the motion of BC. The
equations of motion for various single degree of freedom systems are derived in
Chapter 2.



Vibrations may be excited by impressed motion at the support. Considering Figure
2, to represent a simple structure, its response to vibrations transmitted through
the ground‘by earthquakes, traffic, pile-drivers,. hammers, explosiorns etc. is
important in practice. Suppose th;t the support A in Figure 1 is given a vertical
displacement xo(t) or the foundation AD in Figure 2 is given a horizontal displace-
ment xo(t). In both cases the restoring force on the mass due to deformation of
the spring or stanchions is k(x—xo). The damping force is proportional to the rel-
ative velocity across the dashpot (Figure 1) and is c(x - io). If the force P(t),

shown in Figure 1 and 2, is no longer acting, the equation of motion is:

mx = - k(x- xo) —~c(x - io)

Writing equation (2) in terms of the displacement of the mass relative to the

support (i.e. the deformation of the spring or stanchions), 2 At
mX +cx +kx = -mX (3)

The solution of equation (3) yields the relative displacement, which is prdportional
to the stress in the elastic member. This solution can be obtained when the base
acceleration io is specified. In practical problems relating to excitation due to
imposed motion of the base, the acceleration is usually known, rather than the dis-

placement and velocity, although the latter can be found by integration.

Equations (1), (2) and (3) are mathematically similar. Thus discussion of the
aifferent types of excitation, i.e. how the applied force or bqse motion varies with
time, applies to all three equations. Solutions obtained from one equation can be
used to infer solutions for either of the others. Only a change of nomenclature is

required to interchange solutions between equations (1) and (3).

Considering the force P(t), shown in Figures 1 and 2, there are three main types of
excitation: (i) Harmonic forces, such as P(t) = Po sin wt or P(t) =.Cw? sin wt,
(the latter is typical of a component of the force produced by out of balance in a
rotating machine). A force which is periodic but not harmonic can be expressed as
a sum of harmonic terms, using Fourier series, and for a linear system the total
response can be obtained by superposing the individual response from each harmonic
component of the force. Thus forces which are periodic but not harmonic will not
be considered further. (ii) Transient or aperiodic forces: usually these are
forces which are applied suddenly or for a short interval of time; simple examples,

illustrating the two types, are shown in Figure 3(a) and (b). (iii) Random forces:



\.

the force P(t) cannot be specified as a known function of time, but can be des-
cribed only in statistical terms; forces due to gusts of wind form an example of

this type of excitation.

For (i) the steady-state response of the mass to the harmonic force is required.
For (ii) tne transient response is required, usually the maximum displacement of
the mass or the maximum extension of the spring (the stress in the elastic member
of the system is proportional to this extension), occurring during the period of
application of the force or in the motion immediately following this period, will

be of greatest interest. For (iii) the response can only be determined statistically.

Mathematically, the solution of equation (1) consists of two parts: the complement-
ary function, which is obtained by solving the equation with the right hand side
equal to zero, i.e. P(t) = C, and the particular integral which depends on the

form of P(t). Physically, the complementary function represents free damped
vibrations, i.e. the vibrations that occur if the mass is given an initial displace-

ment or velocity and released. The solution for free vibrations can be written

x = expl{- Ymnt)(A sin wdt + B cos mdt) (4)
%
where . = w (1 - y?)* (5)
d e n
%
w? = k/m, Y =c¢/c o and c_ = 2(km)? = 2k/w_ = 2mw (6)
n c c n n

In equation (4) the constants A and B afe chosen to satisfy the initial conditions,
i.e. the values of x and % at time t = 0. Equation (4) répresents a damped
oscillation: x+0 as t+ = - . It has been assumed that the damping rafdo . ¥ <.,de
In practice, Yy << 1; thus from equation (5) md = wn. Now mn is the (circular or
radian) natural frequency of the system and is of great importance in vibration
analysis. If an iﬁitial displacement is given to the mass in Figure 1 or 2, the

frequency of the ensuing - vibrations is strictly but provided that y << 1 it

®
d'

can be assumed that the natural frequency W, has been measured. The assumption that

Yy << 1 can be checked by determining Yy from the rate of decay of successive oscil-

lations. (See Chapter 2 for further details).

3 Response
The response of systems with one degree of freedom (Figures 1 and 2) to the various

types of excitation force will be summarised.



nsidering a harmonic applied force, i.e. P(t) = P cos wut, where Ep is a constant

i w is the (radian) frequency of the force, equation (1)} becomes
mX +CX + kx = PO cos ‘wt 4 (7)

The complete solution consists of free damped vibrations [equation (4)] and a
particular integral. However, the former dies out and thus the steady state solution
is given by the particular integral, which can be shown tc be

P cos(wt - B)

o

x = Y (8)
[(k - mw2)2 4+ c2w?)]?

cw

with tan B il P =

Using definitions (6) and putting r = m/wn, i.e. r is the ratio of the excitation
frequency to the natural frequency, the steady state amplitude X from equation (8)
is

kX 1
ST s = ¢ (9)
Po [(2 - r2)2 + (27r)‘]% %%

Now Po/k is the static deflection of the mass due to a static force Po' so kX/P° is
the dynamic magnification factor. Equation (9) introduces the phenomenon of reson-
ance. ‘The dynamic magnification factor is a function of the frequency ratio r and
the'damping ratio y. For y small it has a sharp peak when £ = 1 and this peak
value, obtained by putting r = 1 in equation (9), is 1/2y. Thus for practical sys-
tems with low damping the dynamic magnification factor is very large when the
excitation and natural frequencies coincide. However, well away from resonance the

dynamic magnification factor is not large. (See Chapter 2 for further details).

Looking ahead to more complex structures, the viscous damping mechanism, shown in
Figure 1 énd used in the above equations, causes the response at higher frequencies
(strictly higher resonances) to be underestimated. To overcome this difficulty
viscous damping is replaced by hysteretic damping, i.e. the damping term c X in
equation (1) is replaced by hx/w, where h is the hysteretic damping constant and
is the excitation frequency. With the viscous damper the energy dissipated per
cycle increases linearly with the frequency, although the amplitude of vibration is
kept constant. For a hysteretic damper the energy dissipated per cycle is independ-

ent of the frequency. For hysteretic damping equation (7) is replaced by

mX + h %X/w + kx = P cos ut (10)



If h/k = u, the steady state amplitude is

1
[(1 -r2)% + u']z

(11)

o"I%

4
The maximum value of the dynamic magnification factor is 1/p and occurs when r = 1.

For a general transient force P(t) the solution of equation (1) is given by the
Duhamel integral, which is derived in Chapter 2, or by the convolution integral

using Laplace transforms, and is

t
X = E%— I P(t) exp [- Yo (t - 1)] sin md(t = t)dt (12)

d
o

In equation (12) it is assumed that at t = O the displacement and velocity of the
mass are zero. If these conditions are not satisfied, free vibrations, equatioﬁ (4)
must be added with A and B determined from the non-zero conditions. [Equation (12)
could be used to determine the complete response to a harmonic applied force, but
other methods of solution are simpler.] Considering the step function force of

Figure 3a, P(t) = Po’ t > 0, equation (12) is integrated and the response

kx - . ¥
= Tt exp(-Ymnt) [ cos w.t + ____—:;K sin ”dt.] (13)

o u (1 -y

This gives damped oscillations about the new mean position, given by kx/Po &1

The maximum response occurs when wdt = 7 and is given by

[I;_x] 5 1+exp[—.—"t—x] (14)
max (1 - v2)

The variation of the dynamic magnification factor from equation (14) with the damping
factor y is shown in Table 1. For small damping the factor is relatively insensitive
to y. For comparison the maximum dynamic magnification factor associated with a

harmonic force; namely 1/2y for r = 1, is also given in thé table.

‘Next consider the response of the.system of Figure 1 to a sinusoidal force of finite
duration, i.e.

P(t)

P sinE 0gtgNt (15)

P(t)

]

0, t > Nt
[}

where N is an integeri- [ The force P(t) is shown in Figure 3(b) for N = 1 ].



~

The response for t & Nt0 is obtained by substituting equation (15) in (12). For t

> Nto free- damped vibrations occur and are given by equation (4) with A and B chosen
to give appropriate continuity conditions at t = Nto. Figure 4 shows the dynamic
magnification factor, i.e. the maximum value of kx/Po with respect taq time, plotted
against to/T for zero damping (y = 0) and n = 1, 2 and 4; T(=21/wn) is the period
of the system. Outside the range of values of to/T for which (kx/Po)max has been
plotted for N = 2 and 4, its behaviour is more complicated but values are signif-
icantly less than the peak values shown. When to/T =.0.5; (kx/Po)max = Nn/2. Thus
for an excitation force of two complete waves (N = 4) the dynamic magnification
factor can be as large as 6.3, For the plotted ranges the maximum displacement
occurs in the-residual or free vibration era (i.e. t > Nto) i g to/T < 0.5 and occurs

in the forced vibration era (i.e. t < Nto) it to/T 2 0.5,

For a random variable the spectral density shows the distribution of the harmonic
content of the variable over the frequency range from zero to infinity. If the
spectral density is specified, the mean value of the square of the variable can be
obtained. For stationary ergodic random processes with Gaussian or normal probab-
ility distributions (these standard assumptions for random vibration theory are
described in Chapter 14), if Sp(w) and Sx(m).are the spectral densities of the in-
put force and response respectively for the system of Fig. 1, the mean square values

are given by

S PAIE) Satne %; I 5,(w) du (16)
0
and -/
< x2(t) > = %; j Sx(m) dw (17
(o]

It can be shown (Chapter 14) that the spectral densities are related by

Sp(w)

sx(“’) = KL - rD)Z ¥ (2yr)?] " (18)

[If hysteretic damping replaces viscous damping in Fig. 1, 2yr in equation (18) is
replaced by u]. If the spectral density of the force is known, the mean square
value of the response is obtained from equations (17) and (18). The simplest force
spectrum is: Sp(w) — So, a constant; i.e. the‘spectrum is uniform over the com-
plete frequency range and is called white noise. The corresponding mean response

is, from the calculus of residues,

S w
0N

By K* e

< x* () > =
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