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Introduction

Domain decomposition methods are a well established tool for an efficient nu-
merical solution of partial differential equations, in particular for the coupling
of different

e models, i.e., partial differential equations;
e discretization methods such as finite and boundary element methods;
e finite-dimensional trial spaces and their underlying meshes.

Especially when solving boundary value problems in complicated three-
dimensional structures, a decomposition of the complex domain into simpler
subdomains seems to be advantageous. Then we can replace the global prob-
lem by local subproblems, which are linked together by suitable transmis-
sion or coupling conditions. The solution of local boundary value problems
defines local Dirichlet—-Neumann or Neumann-Dirichlet maps. Hence, in do-
main decomposition methods we need to find the complete Cauchy data on
the skeleton. This results in a variational formulation to find either the Dirich-
let or Neumann data on the skeleton, and the remaining data are determined
by the local problems and the coupling conditions. By solving local Dirich-
let boundary value problems we can define local Dirichlet-Neumann maps
involving the Steklov-Poincaré operator acting on the given Dirichlet data
and some Newton potential to deal with given volume forces. To describe the
Steklov—Poincaré operator locally we can use either a variational formulation
within the subdomains or we can use boundary integral equations to find
different representations of the Steklov—Poincaré operator. Since all of these
definitions are given implicitly, we have to define suitable approximations of
the local Steklov—Poincaré operators to be used in practical computations.
For this we may use either finite or boundary element methods locally lead-
ing to a natural algorithm for the coupling of finite and boundary elements.
Moreover, since these approximations are defined locally by solving Dirichlet
boundary value problems, the underlying meshes do not need to satisfy any
compatibility condition.



The coupling of locally different trial spaces is the main concern of this
work. In many situations, for example in case of geometrically singularities
or jumping coefficients, one would like to use local trial spaces defined on
adaptively refined meshes or of different polynomial degree, or a combination
of both. Then the problem arises, how to couple the local trial spaces to get
a stable approximation globally.

In [8], a new concept to couple standard finite elements and spectral ele-
ments was introduced; this approach finally leads to the Mortar finite element
method [9]. Introducing Lagrange multipliers as dual variables, a weak cou-
pling of the primal variables is formulated. Variants of this method are hybrid
coupled domain decomposition methods [3]; the hybrid coupling of finite and
boundary elements [43]; three—field domain decomposition methods [24]. Since
all of these methods can be formulated as saddle point problems, we need to
have a certain discrete inf-sup condition to be satisfied [21]. Using a criteria
due to Fortin [36], the discrete inf-sup condition is equivalent to the stability
of an associated Ly projection operator in H/? (I3;) where I3; is the local
coupling boundary of the subdomains {2; and 2;. For globally quasi—uniform
meshes, the stability of the L, projection operator follows from appropriate
error estimates and the use of the inverse inequality. However, for locally qua-
siuniform meshes such an approach is not applicable. One way out is the use of
discrete Sobolev norms [14, 73]. Another possibility is to prove the stability of
the Ly projection operator directly in the scale of Sobolev norms. In [34], the
required stability in H! was shown for nonuniform triangulations in one and
two space dimensions satisfying certain mesh conditions. The analysis is based
on decay properties of the Ly projection and results in conditions which de-
pend on the global behavior of the mesh. In a recent paper [18] we proved the
H! stability of the Ly projection onto piecewise linear finite element spaces
for arbitrary space dimension. In this case we can formulate explicit local
mesh conditions which can be checked easily for a given finite element mesh.
This approach can be extended to more general situations, i.e. when using
higher order polynomial, dual and biorthogonal basis functions. Biorthogonal
basis functions were introduced in [75] to prove the stability of the Mortar
finite element method. We will show that biorthogonal basis functions fit in
the approach presented here. In the recent literature 7, 13, 49] there is a
special emphasis on the numerical analysis of Mortar finite elements in three
space dimensions. Using the general approach described in this monograph
we are able to design appropriate Lagrange multiplier spaces to be used in
hybrid coupled domain decomposition methods. We prove stability estimates
for quite general trial spaces assuming only some mild conditions on the un-
derlying mesh. Moreover, by computing some local mesh parameters one is
able to control the formulated stability criteria.

Note that the Mortar finite element method is applicable to couple non-
matching grids and local trial spaces of different polynomial degree. Another
approach to couple locally non-matching grids without the use of Lagrange pa-
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rameters is based on a domain decomposition formulation with local Dirichlet—
Neumann maps. Defining a global trial space on the skeleton, a Galerkin vari-
ational problem is formulated for the assembled Steklov—Poincaré operators
which correspond to the solution of local Dirichlet boundary value problems.
Therefore, an approximation of local Steklov-Poincaré operators is only de-
fined by using local degrees of freedom. When using a boundary element
method we need to approximate the conormal derivative, when using a finite
element method we need to approximate the solution of a Dirichlet boundary
value problem in interior nodes. Since both trial spaces are locally, no compat-
ibility conditions are required. This results in a natural domain decomposition
method [68]. For solving a Dirichlet boundary value problem using finite el-
ements we have to extend the given Dirichlet data from the boundary to
the domain. In case of nested trial spaces, this can be done by interpolation,
otherwise one may use a two-level method globally.

The discretization of several domain decomposition algorithms discussed
here leads to linear algebraic systems, where the stiffness matrix is in gen-
eral positive definite, but either symmetric or block skew—symmetric. Hence,
for an efficient iterative solution in parallel, one needs to design special algo-
rithms and almost optimal preconditioners to be used. Note that we will not
focus on this topic here, but we refer to [11, 17, 41] for finite element domain
decomposition methods; to [14, 38, 70, 74] for multigrid methods for Mortar
finite elements; to [27, 51, 60, 69] for boundary element domain decomposi-
tion methods; to [16] for positive definite and block skew—symmetric linear
systems.

In this work, our main focus is on the formulation and on the stability
analysis of hybrid coupled domain decomposition methods. In Chapter 1 we
review the definition of Sobolev spaces and give an overview about variational
methods for saddle point problems. In particular we discuss a two—fold saddle
point formulation. After introducing some notations for finite element spaces
we define several Ly projection operators by Galerkin-Bubnov and Galerkin—
Petrov variational problems. To prove the stability of these operators we need
to have a bounded projection operator providing local error estimates. For
this we recall the definition of quasi interpolation operators from [30].

Based on the equivalence of different stability estimates, and assuming
the positive definiteness of a scaled Gram matrix, we prove in Chapter 2
the stability of the L, projection in H? for s € (0,1]. Then we investigate
the required positivity assumption on the scaled Gram matrix by computing
its minimal eigenvalue. For piecewise linear finite elements this results in an
explicit and easily computable formula. When using higher order polynomial
basis functions it is in general impossible to compute the minimal eigenvalue
of the scaled Gram matrix in an explicit form. However, for a given mesh we
can compute the eigenvalues numerically. We will illustrate the applicability of
this approach by using Lagrange polynomials and antiderivatives of Legendre
polynomials as local basis functions.



In Chapter 3 we introduce the Dirichlet—-Neumann map and define the
Steklov—Poincaré operator and the Newton potential by solving related Dirich-
let boundary value problems. A first approach is based on a variational formu-
lation using the Dirichlet bilinear form, the second one is based on a symmetric
representation of the Steklov—Poincaré operator by using boundary integral
operators. Using these representations we obtain results on the mapping prop-
erties of the Steklov—Poincaré operator. Since the Steklov—Poincaré is defined
via the solution of a Dirichlet boundary value problem, we have to introduce
suitable approximations. According to the definitions we use either a finite el-
ement method in the domain or a boundary element method on the boundary.
Both lead to stable approximations of the Steklov—Poincaré operator. Apply-
ing the same ideas we can approximate the Newton potential and therefore
we obtain an approximate Dirichlet—-Neumann map.

This approximate Dirichlet—Neumann map is used in Chapter 4 for the
numerical solution of mixed boundary value problems. The trial space for the
unknown Dirichlet data on the boundary is in general independent of the trial
space used to approximate the Steklov—Poincaré operator. In a first approach
we eliminate the Neumann data while in a second approach we keep the
Neumann data as an unknown function in the variational formulation. This is
then equivalent to variational formulations using Lagrange multipliers [4, 15].
When using a compatible trial space to approximate the Steklov—Poincaré
operator by finite elements, this discrete Steklov—Poincaré operator coincides
with the Schur complement of the standard finite element method.

In Chapter 5 we use the same ideas to formulate hybrid coupled domain
decomposition methods. Using a global trial space on the skeleton and elimi-
nating the Neumann data by a weak coupling condition across the local inter-
faces, this gives a variational formulation of the assembled Steklov—Poincaré
operators. To approximate the local Steklov—Poincaré operators, we can use
trial spaces, which are independent of the trial space on the skeleton. Espe-
cially when using finite element approximations of the local Steklov—Poincaré
operators, we obtain a method, which includes the coupling of non—matching
meshes in a natural way. For a more practical approach we can formulate this
method as a two-level algorithm consisting of a global coarse grid space and
local fine grid spaces. To be more flexible, one may introduce an additional
trial space for the primal variable locally. This leads to a three field domain
decomposition method [24] which can be analyzed as a two—fold saddle point
problem. To ensure stability, we have to define appropriate trial spaces satis-
fying the stability conditions as formulated in Chapter 2. When using a strong
coupling of the local Neumann data, i.e. using a formulation with Lagrange
parameters, we obtain a Mortar finite element method. Using the theory on
saddle point problems we can ensure stability and convergence, when the trial
spaces are chosen in an appropriate way. To illustrate the applicability of the
proposed natural domain decomposition method we describe then a simple
numerical experiment. We consider two model problems with jumping coeffi-
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cients requiring a heterogeneous discretization within the subdomains. Finally,
to describe a more practical situation, we consider a three—dimensional prob-
lem from linear elastostatics, where the domain is non Lipschitz. A domain
decomposition leads to local subproblems where the substructures are Lips-
chitz domains. The local Steklov—Poincaré operators are then discretized by
a symmetric Galerkin boundary element method.
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Preliminaries

In this chapter we summarize some results which are needed frequently in
the succeeding chapters. In particular, we give a brief introduction to Sobolev
spaces, for a detailed presentation, see for example [1, 52, 53]. Following [21]
we then describe abstract results for the variational solution of saddle point
problems, see also [57]. Then we summarize some basic definitions and proper-
ties of general finite element spaces and their underlying triangulations. Using
Galerkin—-Bubnov and Galerkin—Petrov variational formulations we introduce
L, projection operators onto finite element spaces. To prove the stability of
these operators in a scale of Sobolev spaces we need to have projection op-
erators which are stable and admit local error estimates. Following [30] we
introduce quasi-interpolation operators which satisfy both of these require-
ments.

1.1 Sobolev Spaces

Let 2 C R® with n = 2 or n = 3 be a bounded Lipschitz domain with
boundary I' := 82. For k € Ny we define the norm

1/2
lullar oy == { 3 ID%ull2, (g (1.1)
|a|<Kk
while for 0 < s € R, s ¢ N, we define
1/2
lullizscoy = Iy + luldieay } (12)

using the Sobolev—-Slobodeckii norm
1/2

|ulbs(2) == HZ[ //IDa 7= Iﬂm( Wy b . 13)
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For s > 0 we introduce the Sobolev spaces
HY() = C_ooTﬁ)‘”'””“m,
HE(0) = WIHIm(m,
H(Q) == Wlbllmmn)‘

Note that for s > 0 we have the embedding

H*() C HY(2). (14)

For s < 0 the Sobolev spaces are defined by duality with respect to the Ly (£2)
inner product,

In fact, see for example [52, Theorem 3.33],

N | ot

H*() = H§(2) provided s ¢ {% g

H'(Q) = [H@), H(Q) = H@) (1.5)
with norms
fiv
|fllf=(2) == sup |<)—Ln(ﬂ)|,
0#veH—*(0) [l -2 (2)
|<f1’v)[,2(g)|
f He = sup N 7/ La ()1
” ”H (£2) 0#vEH—2(02) ”U”H“(ﬂ)

Let f € fI’(.Q) be given for some s < 0. Then,

(f’v) 2
[|fllgs(2) =  sup _lllvll La(2)
0#veH-*(02) H-2+(2)
(va)L 2
< ap W@l g (16)

~ ozver— () V-2 (a)

and therefore f € H*(£2). Hence we have the embedding H*(£2) C H*(12) for
all s € R.

In a similar way as above we can define Sobolev spaces on the closed
boundary I' := 8f2. In particular, we are interested in the case s € (0,1)
where the norm of the Sobolev space H*(I) is given by

1/2
lallirocry = {Illl ey + ulfzecr } (1.7)

with
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|u(z) — u()|*
|U|§1.(r) = / st,dsy. (18)

For s = 1 we use the covariant derivatives to define

|l (ry = {H“Hiz(r) + Z ||Daul|i2(r)}- (1.9)

le|=1

Note that for s > 1 we need stronger assumptions on {2 to define Sobolev
spaces H*(I'), see for example [52]. In particular, if £2 is C*~!'! for k > 0,
then H*(I'") is well defined for |s| < k.

Finally, for s < 0 we define H*(I") := [H~*(I')]* by duality with respect
to the Ly(I") inner product,

A V)L,
ey = sup  Wothawn] (1.10)
ogveH—+(r) |VIlE=-+(r)

Theorem 1.1. [52, 53] Let 2 C R" a bounded domain with Lipschitz bound-
ary I' == 80. For any u € H'(R2) there exists the trace you € H'/?(I)
satisfying

Ihoullgr2ry < er - ||ulla a)- (1.11)

Vice versa, for anyu € H'/?(I") there exists a bounded extension Eu € H' (12)
satisfying vo€u = u and

Eullm @y < err - ||ullarzry- (1.12)

Let Iy C I' be an open subset of the closed boundary I' = 2. As in (1.4)
we define two kinds of Sobolev spaces on I,

H*(I) := {u : u="Ur, for some U € H*(I')}
H*(Iy) == {u € H*(I') : suppu C Io}
with norms
lellfe(roy = u.:illl/fro WUNaesrys Nl e ryy == lullme -
These two families of spaces are related by duality with respect to La(Ip),
[H*(D))* = H™*(lo), [H'(Iy)]* = H*(I[y) forseR.

Note that H*(Ip) is often denoted by Hg,(Io).
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1.2 Saddle Point Problems

Let X and II be some Hilbert spaces equipped with norms || - ||x and || - ||m,
respectively. We assume that there are given some bounded bilinear forms

a(): X x X 5 R,
b(-,) : X x IT -+ R.

Note that by the Riesz representation theorem we can identify the bilinear
forms a(-,-) and b(-, -) with bounded operators A : X -+ X* and B : X — IT*,
respectively. In particular, for u € X we define Au € X™* such that

(Au,v) = a(u,v) forallve X
and Bu € IT* satisfying
(Bu,p) = b(u,p) forall u € II.

For given f € X* and g € IT* we consider the saddle point problem to find
(u,A\) € X x II such that

a(u,v) - b(’l), ’\) = (f,’U)

1.13
b(u, p) = (9, 1) )
for all (v,u) € X x II.
Denote
V:i=kerB :={ve X : b(v,7) =0 forallrell}, (1.14)
its orthogonal complement
Vi ={weX: (w)=0 forallveV,}. (1.15)
and
VO = {feX*: (f,v)=0 forallveV}. (1.16)

Theorem 1.2. [12, 21, 57| Let the bounded bilinear form a(-,-) : X x X - R
be elliptic on V = ker B,

a(v,v) > et -||lv||% for allv €V =kerB. (1.17)
If the bounded bilinear form b(-,-) : X x I — R satisfies the inf-sup condition

inf b(v, p)

sup ————— > 75 > 0 1.18
0#uell ozyex |[v]|x||pllm ’ -

and if g € Im B, then there exists a unique solution of (1.13) satisfying

lullx +[|Mllz < c-{lIfllx +lgllm}- (1.19)
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Moreover, B : V+ — IT* is an isomorphism satisfying

vs - |lvl|x < ||Bv|lms for allv € V*. (1.20)
Finally, the operator B* : I — V° is an isomorphism satisfying

vs - lullm < |B*ullx  for all p € II. (1.21)

Let X, C X and II, C II be conforming finite dimensional trial spaces.
The Galerkin variational formulation of the saddle point problem (1.13) is to
find (up,An) € Xp % II}, such that

a(un, vn) = b(vn, An) = (f,vn)

b(un, pn) = (9, pn) (1.22)
for all (vp, ur) € Xp X IIy. As in the continuous case we define
Vi := {vn € Xp : b(va,7n) = 0 for all 7, € IT} (1.23)
and assume that the bilinear form a(-,-) is V,—elliptic,
a(vp,vp) > & - ||lonll%k  for all vy € Vi. (1.24)

Theorem 1.3. (12, 21, 57] Let the assumptions of Theorem 1.2 be satisfied
and let the bilinear form a(-,-) be Vj—elliptic. Let V, C V. If the discrete
inf-sup condition

b(vp, ~
inf sup _blon,pn) >79s >0 (1.25)
0F#pn €ITh 0£v, € Xn II”h”XIIl‘hIlH

is valid, then there exists a unique solution of (1.22) satisfying the error esti-
mates

— <o - inf -
[lu —upllx < e v;.lg)(;.“u unllx,

A=A <ecp-4 inf |Ju—-v + inf ||A- .
A= ullr < o { ing fl = onlle + inf 1A= il

Hence we have convergence when assuming some approximation properties
of X, and IT,,. The crucial assumption of the preceding theorem is the discrete
inf-sup condition (1.25). To characterize this condition we use a criteria due
to Fortin [36]:

Theorem 1.4. Assume that the continuous inf-sup condition (1.18) is satis-
fied. Let Py, : X — X3, be a projection operator satisfying the orthogonality

b(v — Ppo,pup) = 0 for all py, € Iy,
and the stability estimate

[|1Pro]|x < es-||v]lx for allv € X.
Then, (1.25) holds with 4s = ys/cs.
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Instead of the saddle point problem (1.13) we now consider a two—fold
saddle point problem. Let X, II; and II; be some Hilbert spaces with norms
[|-llx, || ||, and || ||m,. Then we want to find (u, A, w) € X x II; x II; such

that
bi(u, p) — ba(p, w) = (f1, 1)
=by (’U,)\) A+ a(u,v) = (f2)v) (126)
b2(’\12) = (g’z)

for all (v, u,2) € X x II; x II,. Here,

a(,) 1 XxX SR
bl(',')ZXXHl —-)R,
ba(vy<) : II x II; =& R

are bounded bilinear forms implying, by the Riesz representation theorem,
bounded operators A : X — X*, By : X — II} and B, : II; — II}, respec-
tively.

Two—fold saddle point problems (1.26) appear in many applications: the
coupling of mixed finite elements and symmetric boundary element methods
[37]; hybrid boundary element methods [64] or three-field domain decompo-
sition methods, see [24].

To prove unique solvability of the two—fold saddle point problem (1.26) we
apply Theorem 1.2 twice. As in (1.14) we define

ker By := {p € IT, : ba(u,2) = 0 forallze I,}. (1.27)
Moreover,
kerg, By = {v€ X : bi(v,u) = 0 for all u € ker Bo}. (1.28)

Theorem 1.5. Let the bounded bilinear form a(-,-) : X x X — R be elliptic

on kerp, By,
a(v,v) > c-||v||% for allv € kerp, B; . (1.29)

Let the bounded bilinear forms bi(-,-) : X X II; and ba(-,-) : II1 x II5 satisfy
the inf-sup conditions

bl ('U’ ll')

inf s e >0 1.30

oA, o2, Tollxlledlm, =75 > @ (1.30)
b

inf  sup ﬂ >vs > 0. (1.31)

0#z€M ozper, ||pllm |2l

If g € ImB;y and fi € ImB; is satisfied, then there exists a unique solution
(u, \,w) € X x IT} x IT, of the two—fold saddle point problem (1.26) satisfying
the stability estimate

llullx +IIMm + llwllz, < e {llfilla; +If2llx- +lgllmg } . (132)



