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Preface

This book is written for the one- or two-semester course in ordinary differential
equations and was developed specifically with students of engineering and the
physical sciences in mind. A knowledge of elementary calculus that is
normally learned in a standard two- or three-semester university calculus
sequence is assumed. The book has grown out of my experiences over the past
several years in teaching various topics from the book in the ordinary
differential equations course at North Carolina State University. During this
time I have formed definite opinions as to the most effective instruction
techniques which enable students to learn both the applications and the
underlying theory of ordinary differential equations. It should be emphasized
that without theory applications alone become a rote use of memorized
techniques which are applied only with difficulty to nonstandard or previously
unencountered problems.

This experience has led me to adopt a philosophy of instruction which
employs so-called qualitative methods as adjuncts to the more computational
techniques for solving equation systems. An example of such a qualitative
method is the procedure for sketching the graphs of solutions, introduced
in Chapter 1 to complement the techniques for solving first order linear
equations. Other qualitative methods are used throughout the book. The
emphasis of these qualitative methods is to show how the methods actually
apply to specific problems and models; they are not intended as substitutes
for the standard methods of solution computation.

My experience in teaching applied science students has also influenced
both the writing style and the general organization of this book. I have
endeavored to keep my writing style simple, clear, and to the point but with
no sacrifice of rigor. Students are introduced to proofs, but are not over-
burdened with technicalities. Where a proof is beyond the mathematical
knowledge of students at this level, either an intuitive proof or a simple
explanation of the general direction a proof would take is substituted. In
general, explanations of both theories and applications are very detailed,
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PREFACE [J xii

probably more so than in any other book at this level. For those who wish
further to pursue a given topic, a short bibliography is provided at the end
of the book, together with appropriate in-chapter references.

Examples are usually used to introduce a given topic. The approach to
any given example is usually natural, and with a little thought would probably
even occur to most students, although at this stage of their mathematical
development many students would not likely be able to carry the mathematics
through to a conclusion. In this respect the book is designed to be partially
self-teaching, and by reducing the class time needed for basic explanations
should free class time for analysis of topics especially pertinent to a given
class’s interests.

In keeping with my goal of making this book useful for as broad a range
of students as practical, I have provided a wide variety of applications with
clear, detailed explanations of the physical properties involved in the examples
and problems. This variety allows the instructor to choose applications which
most closely match the mathematical backgrounds and interests of the class.
There is a generous number of problems. All problems are intended to be
instructive, and not merely drill. Some problems are so structured as to
require the student to bring together material from several different sections
in order to develop a strategy for solving the problem. In effect, such problems
are brief tests.

Finally, the inclusion of several not so standard but illuminating topics,
such as the thorough discussions of critical points in Section 1.5 and limits
of solutions in Section 2.5b, encourages the growth of the students’ mathematical
sophistication.

Chapters 1 and 2 emphasize basic methods of explicitly solving standard types
of equations and also indicate some fundamental applications. Methods for first
order linear and nonlinear equations are contained in Chapter 1 and methods
for second order linear equations are contained in Chapter 2. A procedure
for sketching the graph of solutions, the first of several qualitative methods,
is introduced in these two chapters. A knowledge of the fundamental
terminology and solution methods for first and second order equations in
Chapters 1 and 2 is the basis for the entire book. The remaining chapters
are mutually independent of one another and depend only on the ideas in the
first two chapters. This allows the instructor to tailor the bulk of the course
to the interests and abilities of the class.

Chapter 3 contains the basic properties of the Laplace transform and
indicates the procedure for applying transform methods to solve non-
homogeneous second order equations with constant coefficients. The stress
here is on the elementary properties of the Laplace transform and its applica-
tion in determining solutions to second order linear equations that have
discontinuous nonhomogeneous terms. The case of a jump discontinuity is
considered, and some of the procedures and interpretations for nonhomo-
geneous terms involving the Dirac delta function are also indicated. Power
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series methods for second order linear equations with nonconstant coefficients
are developed in Chapter 4. Equations having ordinary power series solutions
and those having series solutions of the Frobenius type are both considered.
Also, one section is devoted to analyzing some of the most important
equations where power series methods are used (Bessel’s equation, Legendre’s
equation, and the hypergeometric equation).

Elementary concepts and techniques for first order systems of two equations
(linear and nonlinear) are developed in Chapter 5. This chapter divides
naturally into two parts: the explicit computation of solutions to linear
equations with constant coefficients, and the sketching of solution curves in
the plane for time-independent nonlinear equations. Several interesting and
important models involving planar systems are included in the chapter:
mixing in interconnected tanks, epidemics, interacting populations, and
nonlinear oscillations.

Chapter 6 introduces some of the basic concepts and methods associated
with the numerical approximation of solutions to differential equations. These
methods include Taylor series expansions, one-step (Runge-Kutta) methods,
and multistep (predictor-corrector) methods. The techniques are mainly
discussed relative to single first order equations; however, some consideration
is given to approximation of systems of two first order equations. Linear
differential equations of arbitrary order are discussed in Chapter 7. The main
emphasis is on equations with constant coefficients, and it is shown that many
of the properties and techniques for second order equations developed in
Chapter 2 have natural extensions to higher-order equations.

Chapter 8 introduces the basic methods involving the concepts and
techniques for matrix and vector algebra. The type of differential equation
studied is a first order linear system with constant coefficients. A rather
detailed development of the techniques needed from matrix theory is given,
and the student should be able to grasp these ideas without any previous
study in matrix algebra. Solution computations using eigenvalue-eigenvector
techniques are stressed, but other matrix methods are also indicated.

In the one-semester course in introductory differential equations at North
Carolina State, I usually cover the basic solution methods in Chapter 1
(Sections 1.2, 1.4, 1.6, and 1.7), curve sketching of solutions (Section 1.5), and
some applications (e.g., radioactive decay, mixing problems, and population
models). The first five sections in Chapter 2 on second order equations are
then covered, with the emphasis on Sections 2.3 to 2.5. This chapter is
concluded with an application (usually the analysis of vibrations in linear
springs—Section 2.6) and an analysis of Euler’s equation in Section 2.7.

After the first two chapters are covered, the rest of the course can be
taken from any of the remaining chapters and in any order. In the previously
mentioned course I usually go from Chapter 2 directly into Chapter 5,
emphasizing solving linear equations (Section 5.3) and sketching solution
curves for nonlinear equations (Section 5.4). In the remaining time (which
varies considerably, depending on how much detail is covered in Chapter 5)
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I try to cover as much as possible from either Laplace transform methods
or power series methods.

Of course, once Chapters 1 and 2 are covered there is great flexibility
in the choice of additional material. For example, one could cover Laplace
transform methods (Chapter 3), power series methods (Chapter 4), and,
depending on the remaining time, systems of two linear equations (Sections
5.2 and 5.3) or higher-order linear equations (Chapter 7). Another possibility
is to go directly from Chapter 2 to higher-order linear equations (Chapter
7) and conclude with a detailed development of matrix methods (Chapter 8).
Most of the topics in this text can be covered in a two-semester course.

The chapters in this text are divided into sections, and some of the
sections are further divided into subsections. An asterisk preceding the section
or subsection number indicates that the material in this section is perhaps
more difficult to understand than what might be expected of an average
student at the level of this book. Therefore, some care should be taken in
covering those topics. Each section concludes with a set of problems that
pertains to the topics of that section. Generally speaking, the first few
problems are more basic and the latter ones more difficult. Problems requiring
a good deal more than basic procedures are indicated by an asterisk. Answers
to selected problems are included at the end of the book, and almost all of
the computational exercises have answers in this section.

No book emerges fully formed from an author’s forehead. I would like to
acknowledge the inspiration and encouragement I received from my colleagues
at North Carolina State and the help of my students, who class-tested early
versions of the book. I am especially grateful to Professor James Selgrade
who carefully read the entire manuscript and provided answers to most of
the problems. Special thanks also are due to Margaret Memory and Dale
Boger for checking the examples and answers for accuracy in several of the
chapters.

Additionally, I would like to thank Vasilios Alexiades, University of
Tennessee;, Prem N. Bajaj, Witchita State University; Peter W. Bates, Texas
A & M University; John Bradley, University of Tennessee; Hsim Chu,
University of Maryland; Maurice Eggen, Trinity University; Donald L.
Goldsmith, Western Michigan University; Herman Gollwitzer, Drexel Univer-
sity; Ronald B. Guenther, Oregon State University; Terry Herdman, Vir-
ginia Polytechnic Institute; Allan M. Krall, Pennsylvania State University;
Kenneth R. Meyer, University of Cincinnati; James A. Morrow, University
of Washington; David A. Sanchez, University of New Mexico; Thomas J.
Smith, Manhattan College; Ralph E. Showalter, University of Texas at
Austin; and Jacob Towber, DePaul University; who read all or parts of the
draft manuscript. Their comments and occasional criticisms were always to the
point and contributed to what I hope is an excellent introduction to the study
of ordinary differential equations. Any remaining errors of omission or
commission are solely my responsibility. I would be pleased if readers would
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write to me, to deliver either compliments or criticisms. I would also like to
thank Sharon Jones for her help in turning rough drafts into beautifully
prepared final manuscript. Thanks also to John Corrigan and James Amar
of McGraw-Hill for their help throughout the project.

Finally, I would like to thank my family, without whose loving support
this book would not have been written.

Robert H. Martin, Jr.
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|| FirstOrder Equations

The purpose of this chapter is to develop elementary methods for determining
solutions to simple first order ordinary differential equations and to indicate some
basic applications of such equations. The principal methods are integration of
linear equations in Section 1.2, separation of variables in Section 1.4, change of
variables in Section 1.6, and exact equations in Section 1.7. In Section 1.5 ele-
mentary techniques for sketching the graphs of solutions for autonomous equa-
tions are developed and these ideas are used in several applications and models
(see, for example, the population models analyzed in Section 1.8). The applica-
tions considered in this chapter come not only from physics and engineering but
also from the social sciences, chemistry, and economics.

11

INTRODUCTORY CONCEPTS AND EXAMPLES

A differential equation is an equation that involves an unknown function and
its derivatives. An ordinary differential equation is a differential equation
whose unknown is a function of a single independent variable. In this
chapter we consider only ordinary differential equations that are real and first
order: the unknown is a real-valued function of a single real variable, and the
only derivative appearing in the equation is the first. When an ordinary
differential equation arises as a model or description of a scientific phenom-
enon, the independent variable is often time. Therefore the independent vari-
able in this text is usually denoted by ¢t. Also, if y is a real-valued function of
the real variable t, then y' or dy/dt denotes the first derivative of y. The
second derivative of y is denoted by y” or d®y/dt* and the third derivative by
y"” or d3y/dt3. In general, for each positive integer n, y'™ or d"y/dt" is used to
denote the nth derivative of the function y. A differential equation is said to

1
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be of order n if the nth derivative y™ appears in the equation and no deriva-
tives of y larger than n appear in the equation. For example, the equation

Yy +2y*—e Vsint=5

is a differential equation of order 2 since y” occurs in the equation and no
higher derivatives of y appear. As a further example,

cos ty + 4 d
e —— =
Y dt 1+ y?
is a first order differential equation.
In the general case, a real first order ordinary differential equation has the
form

(1, y,y)=0

where the function ® defines the relationship of the derivative y' = dy/dt with
the dependent variable y and the independent variable ¢t. In this chapter,
however, only those equations where the derivative y’ can be explicitly written
in terms of t and y are considered. Therefore, it is assumed that f is a
continuous function of two variables and the differential equation

y =Sty

is considered. A differentiable function y on an interval I is said to be a
solution to (1) on I if y(t) = f(r, /1)) for each ¢t in I. As a simple example, a
solution to the differential equation

y =3y
is the function y(t) = €* for all t. For if y(t) = e, then
y(1) = 3e> = 3y(1)

and y = ¥ is a solution to y' = 3y by definition. In fact, the student should
verify that y(t) = ce® is a solution to y’ = 3y for any constant c. One of the
fundamental problems associated with equation (1) is developing methods for
special types of functions f that lead to the determination of the solutions to (1)
on a given interval I. In general, there are an infinite number of solutions to
(1) on any given interval. For example, if f(t, y) =0, then Wt) =con I is a
solution to (1) for any constant ¢ and any interval /.

EXAMPLE 1.1-1

Consider the equation y = y —t and let I be any interval. For each real
constant ¢ the function y = ce* + ¢t + 1 for ¢ in [ is a solution to this equation,
since

y)=ce'+1=(ce+t+1)—t=yt)—t
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for all £ in I. At this time the reader is not expected to produce a solution to
equation {1). However, one should be able to determine if a given function is
a solution to (1) (see Problem 1.1-1).

)

(3)

In actually trying to explicitly determine a solution to equation (1), the
simplest case is when the function f does not depend on y. Therefore, assume
that g is a continuous real-valued function on an interval I and consider the
equation

¥y =gt

In order to solve (2) on I, one needs to determine all differentiable functions y
on I such that y'(t) = g(t) for all t € I that is, the solutions to (2) on I are
precisely the antiderivatives of g. The solutions to the equation y’ = t2 are all
functions y of the form y = ¢ + t3/3, where c is any constant. In general, the
solutions to equation (2) on I are precisely the functions y on I having the
form

t

wW)=c + f g(s) ds forall tin I
to

where c is any constant.

Therefore, if y is a solution to (2) on I, then y has the form indicated in (3)
for some constant ¢ [and, in fact, ¢ = y(t,)]; and conversely, if y has the form
in (3), then y is a solution to (2). It should be noted that if G is any anti-
derivative of g on I [that is, G'(t) = g(t) for all ¢ in I] then the family

) =¢+ G() fortin i

where ¢ is any constant, describes precisely the same family of functions as
(3). The family (3) of all solutions to equation (2) on I is called the general
solution to (2) on L.

EXAMPLE 1.1-2
Consider the equation y’ = 4 — 3t* on (—o0, o). Since 4t — t3 is an anti-
derivative of 4 — 3t2 on (— oo, o), the family of functions

(t) = ¢ + 4t — 3 for t in (— 00, o), ¢ a constant
34

is the general solution to this equation on (— o0, o0).

The solution set to equation (2) indicates that there may be many different
solutions to a first order ordinary differential equation. Usually one is in-
terested in determining a function y on I that is not only a solution to (1) but
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also satisfies some additional property or condition. [For example, does (1)
have a solution y on (— oo, o0) that is periodic in t: y(t + T) = y(t) for some
T >0 and alt ¢t in (—o0, 00)?] The most important case is determining a
solution to (1) that assumes a specified value y, at some given time #, in
I. Such a problem is called an initial value problem and is denoted in the
following manner:

y =f(ty) W(to) = Yo

where (t,, yo) 1s some given pair in the domain of . If I is an interval and ¢,
is in I, then a solution y to (4) on [ is defined to be a solution to (1) on I that
also has the value yg at time t4: y'(¢) = f(t, y(t)) for t in T and y(ty) = y,.

EXAMPLE 1.1-3

Consider the initial value problem y' =y — ¢, 0) = 4. According to Exam-
ple 1.1-1, the function y(t) =ce' +t + 1 is a solution to the corresponding
differential equation for each constant ¢. Selecting ¢ so that y0)=c+ 1 =4
it follows that y(t) = 3¢* + ¢ + 1 is a solution to the given initial value prob-
lem.

EXAMPLE 1.1-4

Suppose that the position of an object on the x axis is denoted by x(¢) for all
t > 0, and that the instantaneous velocity of this object is sin ¢ for all ¢ > 0. If
initially (at time t = 0) the object is 2 units to the right of the origin, determine
the position x(t) for all times t > 0. Since the instantaneous velocity is x'(t),
the function x should be a solution to the initial value problem

x =sint x(0)=2

By (3) x belongs to the family of functions ¢ — cos t on [0, c©) where ¢ is a
constant. Therefore, since ¢ — cos 0 = 2 implies that ¢ = 3, the position x(t)
of this object is given by x(t) = 3 — cos t for all t > 0.

It is sometimes convenient in studying the behavior of solutions to look at
equation (1) from a geometric point of view. At each point (¢, y) in the plane
the value f(z, y) is the slope of a solution at this point. Therefore, in order to
estimate the graphs of solutions to (1), it is helpful to select *appropriate”
points in the ty plane and indicate the slope of the solutions at these points by
drawing a short line with slope f(¢, y). The graph of these slopes is called the
direction field for the equation (1).
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Figure1.1 Sketch of direction field.

EXAMPLE 1.1-5

Consider the equation y’ = S5y(y — 1) where I =(— o0, o). Since f(t, y) in
this case is independent of ¢, for any given y, the slopes of the solutions at
(t, yo) are the same for all t. Noting that the right-hand side of this equation
is zero when y 1s 0 or 1, positive when y is in (— oo, 0) U (1, oc), and negative
when y is on (0, 1), one can readily verify that the sketch of the slopes given in
Figure 1.1 gives a reasonable indication of the direction field. For example, if

y =1 then y = 54 —3%) = —3, so the solutions have slope —% when they
cross the line y =4. Also,if y=4theny = —42 and if y = —4 then y’ =

(these values are 1nd1cated in Figure 1.1).
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Figure 1.2 a Sketch of direction field. & Sketch of solution curves.



