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PREFACE

This text is intended as the basis for an intermediate course in mechanics
at the junior 3% senior level. Such a course, as essential preparation for
advanced work in physics, has several major objectives. It must develop
in the student a thorough understanding of the fundamental principles of
mechanics. It should treat in detail certain specific problems of primary
importance in physics; for example, the harmonic oscillator, and the
motion of a particle under a central force. The problems suggested and
those worked out in the text have been chosen with regard to their in-
terest and importance in physics, as well as to their instructive value.
This book contains sufficient material for a two-semester course, and is
arranged in such a way that, with appropriate omissions, it can be used
for a single three- or four-hour course for one semester. The author has
used this material, with the omission of Chapters 8 and 9, and of & num-
ber of sections from earlier chapters, in a four-hour course in mechanics.

The choice of topics and their treatment throughout the book are in-
tended to emphasize the modern point of view. Applications to atomic
physics are made wherever possible, with an indication as to the extent of
the validity of the results of classical mechanics. The inadequacies in
classical mechanics are carefully pointed out, and the points of departure
for quantum mechanics and for relativistic mechanics are indicated. The
development, except for the last chapter, proceeds directly from Newton'’s
laws of motion, which form a suitable basis from which to attack most
mechanical problems. Some problems which are most easily treated by
more advanced methods have been omitted; for example, the motion of a
rigid body in space, which is most elegantly treated with the use of tensor
algebra.

An important objective of a first course in mechanics is to train the
student to think about physical phenomens in mathematical terms. Most
students have a fairly good intuitive feeling for mechanical phenomena in
& qualitative way. The study of mechanics should aim at developing an
almost equally intuitive feeling for the precise mathematical formulation
of physical problems, and for the physical interpretation of the mathe-
matical solutions. The examples treated in the text have been worked
out so as to integrate, as far as possible, the mathematical treatment with
the physical interpretation. After working an assigned problem, the
student should study it until he is sure he understands the physical inter-
pretation of every feature of the mathematical treatment. He should de-
cide whether the result agrees with his physical intuition about the prob-
lem. If the answer is fairly complicated, he should try to see whether it

vi



viii PREFACE

can be simplified in certain special or limiting cases. He should try to
formulate and solve similar problems on his own.

Only a knowledge of differential and integral calculus has been presup-
posed. Mathematical concepts beyond those treated in the first year of
calculus are introduced and explained as needed. A previous course in
elementary differential equations or vector analysis may be helpful, but it
is the author’s experience that students with an adequate preparation in
algebra and calculus are able to handle the elementary vector analysis and
differential equations needed for this course with the explanations provided
herein. A physics student is likely to get more out of his advanced courses
in mathematics if he has previously encountered these concepts in physics.

- The text has been written so as to afford maximum flexibility in the
selection and arrangement of topics to be covered. With the exception
of Chapter 1, the first five sections of Chapter 2, Sections 1, 3, 4, 5,7, 8, 9,
and 12 of Chapter 3, and Sections 1 through 3 of Chapter 4, almost any
section or group of sections can be postponed or omitted without prejudice
to the understanding of the remaining material.

In the first chapter, the basic concepts of mechanics are reviewed, and
the laws of mechanics and of gravitation are formulated and applied to &
few simple examples. The second chapter undertakes a fairly thorough
study of the problem of one-dimensional motion. - The chapter concludes
with a study of the harmonic oscillator, as probably the most important
example of one-diménsional motion. Use is made of complex numbers-to
represent oscillating quantities. The last section, on the principle of super-
position, makes some use of Fourier series, and may be omitted or, better,
passed over with a brief indication of the significance of the principle of
superposition and the way in which Fourier series are used to treat the
problem of an arbltrary applied force function. ‘

. ‘Chapter 3 begins with 4 development of vector algebra and its use in
descr-ibing motions in a plane or in space. Bold-face letters are used for
vectors. Section 3-6 is a brief introduction to vector analysis, which is
used very little in this book except in Chapter 8, and it may be omitted or
skirnmed rapldly if Chapter 8 and one or two proofs in Chapters 3 and 6 are
omitted. The ‘author feels there is some advantage in introducing the
student to the concepts and notation of vector analysis at this stage, where
the level of treatment is fairly easy; in later courses where the physical
concepts and mathematical treatment become more difficult, it will be well
if the notations are already familiar. The theorems stating the time rates
of change of momentum, energy, and angular momentum are derived for
a moving particle, and several problems are discussed, of which motion
under central forces receives major attention. Examples are ta.ken from
astronomical and from atomie problems.

In Chapter 4, the conservation laws of energy, momentum, and angular
momentum are derived, with emphasis on their position as cornerstones of
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present-day physics. They are then applied to typical problems, particu-
larly collision problems. The two-body problem is solved, and the motion
of two coupled harmonic oscillators is worked out. The general theory of
coupled oscillations is best treated by means of linear transformations in
vector spaces, but the behavior of coupled oscillating systems is too impor-
tant to be omitted altogether from an intermediate course. The rigid
body is discussed in Chapter 5 as a special kind of system of particles.
Only rotation about a fixed axis is treated; the more general study of the
motion of a rigid body is left to a later course, where more advanced
methods are used. The section on statics treats the problem of the re-
duction of a system of forces to an equivalent simpler system. Elementary
treatments of the equilibrium of beams, flexible strings, and of fluids are
given in Sections 5-9, 5-10, and 5-11.

The theory of gravitation is studied in some detail in Chapter 6. The
last section, on the gravitational field equations, may be omitted without
disturbing the continuity of the remaining material, The laws of motion
in moving coordinate systems are worked out in Chapter 7, and applied
to motion on the rotating earth and to the motion of a system of charged
particles in a magnetic field. Particular attention is paid to the status
in Newtonian mechanics of the “fictitious forces’” which appear when
moving coordinate systems are introduced, and to the role to be played by
such forces in the general theory of relativity.

In Chapter 8, an introductory treatment of vibrating strings and of the
motion of fluids is presented, with emphasis on the fundamental concepts
and mathematical methods which are used in treating the mechanics of
continuous media. The last chapter, on Lagrange’s equations, is in-
cluded as an introduction to the methods of advanced dynamics. In a
shorter course, either or both of the last two chapters may be omitted
without destroying the unity of the course.

The problems at the end of each chapter are arranged in the order in
which the material is covered in the chapter, for convenience in assign-
ment. They vary considerably in difficulty. Some are fairly easy; a few
are probably too difficult for the average college junior or senior to solve
without some assistance.

Grateful acknowledgment is made to Professor Francis W. Sears of
M.IT. and to Professor George H. Vineyard of Brookhaven National
Laboratory for their many helpful suggestions.

K. R. 8.
February 1953
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CHAPTER 1

ELEMENTS OF NEWTONIAN MECHANICS

1-1 Mechanics, an exact science. When we say that physics is an
exact science, we mean that its laws are expressed in the form of mathe-
matical equations which describe and predict the results of precise quanti-
tative measurements. The advantage in a quantitative physical theory is
not alone the practical one that it gives us the power accurately to predict
and to control natural phenomena. By a comparison of the results of
accurate measurements with the numerical predictions of the theory, we
can gain considerable confidence that the theory is correct, and we can
determine in what respects it needs to be modified. It is often possible
to explain a given phenomenon in several rough qualitative ways, and if
we are content with that, it may be impossible to decide which theory is
correct. But if & theory can be given which predicts correctly the results
of measurements to four or five (or even two or three) significant figures,
the theory can hardly be very far wrong. Rough agreement might be a
coincidence, but close agreement is unlikely to be. Furthermore, there
have been many cases in the history of science when small but significant
discrepancies between theory and accurate measurements have led to the
development of new and more far-reaching theories. Such slight discrep-
ancies would not even have been detected if we had been content with a
merely qualitative explanation of the phenomena.

The symbols which are to appear in the equations that express the laws
of & science must represent quantities which can be expressed in numerical
terms. Hence the concepts in terms of which an exact science is to be
developed must be given precise numerical meanings. If a definition of a .
quantity (mass, for example) is to be given, the definition must be such
as to specify precisely how the value of the quantity is to be determined
in any given case. A qualitative remark about its meaning may be helpful,
but is not sufficient as a definition. As a matter of fact, it is probably not
possible to give an ideally precise definition of every concept appearing in
a physical theory. Nevertheless, when we write down a mathematical
equation, the presumption is that the symbols appearing in it have precise
meanings, and we should strive to make our ideas as clear and precise as
possible, and to recognize at what points there is a lack of precision or
clarity. Sometimes a new concept can be defined in terms of others whose
meanings are known, in which case there is no problem. For example,

momentum = mass X velocity
1



2 ELEMENTS OF NEWTONIAN MECHANICS [cHAP, 1

gives a perfectly precise definition of “momentum” provided ‘‘mass” and
“velocity’’ are assumed to be precisely defined already. But this kind of
definition will not do for all terms in a theory, since we must start some-
where with a set of basic concepts or ‘“‘primitive”’ terms whose meanings
are assumed known. The first concepts to be introduced in a theory can-
not be defined in the above way, since at first we have nothing to put on
the right side of the equation. The meanings of these primitive terms
must be made clear by some means that lies outside of the physical theories
being set up. We might, for example, simply use the terms over and over
until their meanings become clear. This is the way babies learn a language
and probably, to some extent, freshman physics students learn the same
way. We might define all primitive terms by stating their meaning in
terms of observation and experiment. In ﬂErticular, nouns designating
measurable quantities, like force, mass, etc., may be defined by specifying
the operational process for measuring them. One school of thought holds
that all physical terms should be defined in this way. Or we might simply
state what the primitive terms are, with a rough indication of their physi-
cal meaning, and then let the meaning be determined more precisely by
the laws and postulates we lay down and the rules that we give for inter-
preting theoretical results in terms of experimental situations. This is the
most convenient and flexible way, and is the way physical theories are
usually set up. It has the disadvantage that we are never sure that our
concepts have been given a precise meaning. It is left to experience to
decide not only whether our laws are correct, but even whether the con-
cepts we use have a precise meaning. The modern theories of relativity -
and quanta arise as much from fuzziness in classical concepts as from in-
accuracies in classical laws,

Historically, mechanics is the earliest branch of phys1cs to be developed
as an exact science. The laws of levers and of fluids in static equilibrium
were known to Greek scientists in the third century B.c. The tremendous
development of physics in the last three centuries began with the discovery
of the laws of mechanics by Galileo and Newton. The laws of mechanics
as formulated by Isaac Newton in the middle of the seventeenth century
and the laws of electricity and magnetism as formulated by James Clerk
Maxwell about two hundred years later are the two basic theories of classi-
cal physics. Relativistic physics, which began with the work of Einstein
in 1905, and quantum physics, as based upon the work of Heisenberg
and Schroedinger in 1925-1926, require a modification and reformulation
of mechanics and electrodynamics in terms of new physical congepts.
Nevertheless, modern physics builds on the foundations laid by classical
physics, and a clear understanding of the principles of classical mechanics
and electrodynamics is still essential in the study of relativistic and quan-
tum physics. Furthermore, in the vast majority of practical applications
of mechanics to the various branches of engineering and to astronomy, the
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laws of classical mechanics can still be applied. Except when bodies travel
at speeds approaching the speed of light, or when enormous masses or

_enormous distances are involved, relativistic mechanics gives the same re-

sults as classical mechanics; indeed, it must, since we know from experi-
ence that classical mechanics gives correct results in ordinary applications.
Similarly, quantum mechanics should and does agree with classical mechan-
ics except when applied to physical systems of molecular size or smaller.
Indeed, one of the chief guiding principles in formulating new physical
theories is the requirement that they must agree with the older theories
when applied to those phenomena where the older theories are known to
be correct. ‘

Mechanies is the study of the motions of material bodies. Mechanics
may be divided into three subdisciplines, kinematics, dynamics, and statics.
Kinematics is the study and description of the possible motions of mate-
rial bodies. Dynamics is the study of the laws which determine, among
all possible motions, which motion will actually take place in any given
case. In dynamics we introduce the concept of force. The central prob-
lem of dynamics is to determine for any physical system the motions which
will take place under the action of given forces. Statics is the study of
forces and systems of forces, with partmul;aér reference to systems of forces
which act on bodieg at rest. e

We may also subdivide the study of mechanics according to the kind of
physical system to be studied. This is, in general, the basis for the outline
of the present book. The simplest physical system, and the one we shall
study first, is a single particle. Next we shall study the motion of a sys-
tem of particles, A rigid body may be treated as a special kind of system
of particles. Finally, we shall study the motions of continuous media,
elastic and plastic substances, solids, liquids, and gases.

A great many of the applications of classical mechanics may be based
directly on Newton’s laws of motion. All of the problems studied in this
book, except in the last chapter, are treated in this way. There are, how-
ever, a number of other ways of formulating the principles of classical
mechanics. The equations of Lagrange and of Hamilton are examples.
They are not new physical theories, for they may be derived from Newton’s
laws, but they are different ways of expressing the same physical theory.
They use more advanced mathematical concepts, they are in some respects
more elegant than Newton’s formulation, and they are in some cases more
powerful in that they allow the solutions of some problems whose solution
based directly on Newton’s laws would be very difficult. The more differ-
ent ways we know to formulate a physical theory, the better chance we
have of learning how to modify it to fit new kinds of phenomena as they
are discovered. This is one of the main reasons for the importance of the
more advanced formulations of mechanics. They are a starting point for
the newer theories of relativity and quanta.
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1-2 Kinematics, the description of motion. Mechanics is the science
which studies the motions of physical bodies. We must first describe mo-
tions. Easiest to describe are the motions of a particle, which is an object
whose size and internal structure are negligible for the problem with which
we are concerned. The earth, for example, could be regarded as a particle
for most problems in planetary motion, but certainly not for terrestrial
problems. We can describe the position of a particle by specifying a point
in space. This may be done by giving three coordinates. Usually, rec-
tangular coordinates are used. For a particle moving along a straight line
(Chapter 2) only one coordinate need be given. To describe the motion
of a particle, we specify the coordinates as functions of time:

one dimension: z(f),

three dimensions: z(f), y(t), 2(t). (1-1)

The basic problem of classical mechanies is to find ways to determine func-
tions like these which specify the positions of objects as functions of time,
for any mechanical situation. The physical meaning of the function z(t)
is contained in the rules which tell us how to measure the coordinate z of a
particle at a time ¢. Assuming we know the meaning of z(t), or at least
that it has a meaning (this assumption, which we make in classical me-
chanics, is not quite correct according to quantum mechanics), we can
define the z-component of velocity v, at time ¢ as*

z-axis dx
P Ve =L = —) (1—2)
T - * ) dt
i and, similarly,
1
I dz
1z V=9 =" p=4=—.
i v 2
0 | e di dt
'/ x/ i We now define the components of
AV d acceleration a,,a,,a, as the deriva-
/_ y— , tives of the velocity components
T-axis with respect to time (we list several
three dimensions equivalent notations which may be
used):
¢ . o= Be
b T at T ar’
2
one dimension ay, =9, = %ﬁ =g = g_ﬁy’ (1-3)
Fic. 1-1. Rectangular coordinates d 2
specifying the position of a particle P a, =, = . 3= az,
relative to an origin O. z dt dt?

* We shall denote a time derivative either by d/dt or by a dot. Both notations
are given in Egs. (1-2).
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For many purposes some other system of coordinates may be more con-
venient for specifying the position of a particle. When other coordinate
systems are used, appropriate formulas for components of velocity and
acceleration must be worked out. Spherical, cylindrical, and plane polar
coordinates will be discussed in Chapter 3. For problems in two and three
dimensions, the concept of a vector is very useful as a means of represent-
ing positions, velocities, and accelerations. A systematic development of
vector algebra will be given in Section 3-1.

To describe a system of particles, we may specify the coordinates of
each particle in any convenient coordinate system. Or we may introduce

" other kinds of ecoordinates, for example, the coordinates of the center of

mass, or the distance between two particles. If the particles form a rigid
body, the three coordinates of its center of mass and three angular coordi-
nates specifying its orientation in space are sufficient to specify its position.
To describe the motion of continuous matter, for example a fluid, we would
need to specify the density p(z,y,2,t) at any point (z,y,2) in space at each
instant ¢ in time, and the velocity vecter v(z,y,2,t) with which the matter at
the point (z,y,2) is moving at time ¢. Appropriate devices for describ-
ing the motion of physical systems will be introduced as needed.

1-3 Dynamics. Mass and force. Experience leads us to believe that
the motions of physical bodies are controlled by interactions between them
and their surroundings. Observations of the behavior of projectiles and
of objects sliding across smooth, well-lubricated surfaces suggest the idea
that changes in the velocity of a body are produced by interaction with its
surroundings. A body isolated from all interactions would have a con-
stant velocity. Hence, in formulating the laws of dynamics, we focus our
attention on accelerations.

Let us imagine two bodies interacting with each other and otherwise
isolated from interaction with their surroundings. As a rough approxima-
tion to this situation, imagine two boys, not necessarily of equal size, en-
gaged in a tug of war over a rigid pole on smooth ice. Although no two
actual bodies can ever be isolated completely from interactions with all
other bodies, this is the simplest kind of situation to think about and one
for which we expect the simplest mathematical laws. Careful experiments
with actual bodies lead us to conclusions as to what we should observe
if we could achieve ideal isolation of two bodies. We should observe that
the two bodies are always accelerated in opposite directions, and that the
ratio-of their accelerations is constant for any particular pair of bodies no
matter how strongly they may be pushing or pulling each other. If we
measure the coordinates x; and ; of the two bodies along the line of their
accelerations, then

F1/ds = —kia, . (1-4)
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where ks is 2 positive constant characteristic of the two bodies concerned.
The negative sign expresses the fact that the accelerations are in opposite
directions.

Furthermore, we find that in general the larger or heavier or more mas-
sive body is accelerated the least. We find, in fact, that the ratio k. is
proportional to the ratio of the weight of body 2 to that of body 1. The
accelerations of two interacting bodies are inversely proportional to their
weights. This suggests the possibility of a dynamical definition of what
we shall call the masses of bodies in terms of their mutual accelerations.
We choose a standard body as a unit mass. The mass of any other body
is defined as the ratio of the acceleration of the unit mass to the accelera-
tion of the other body when the two are in interaction:

m; = ki = —iﬁ/i‘i, (1—5)

where m; is the mass of body 7, and body 1 is the standard unit mass.

In order that Eq. (1-5) may be a useful definition, the ratio ki of the
mutual accelerations of two bodies must satisfy certain requirements. If
the mass defined by Eq. (1-5) is to be a measure of what we vaguely call
the amount of matter in a body, then the mass of a body should be the sum
of the masses of its parts, and this turns out to be the case to a very high
degree of precision. It is not essential, in order to be useful in scientific
theories, that physical concepts for which we give precise definitions should
correspond closely to any previously held common-sense ideas. However,
most precise physical concepts have originated from more or less vague
common-sense ideas, and mass is a good example. Later, in the theory
of relativity, the concept of mass is somewhat modified, and it is no longer
exactly true that the mass of a body is the sum of the masses of its parts.

One requirement which is certainly essential is that the concept of mass
be independent of the particular body which happens to be chosen as
having unit mass, in the sense that the ratio of two masses will be the
same no matter what unit of mass may be chosen. This will be true be-
cause of the following relation, which is found experimentally, between
the mutual acceleration ratios defined by Eq. (1-4) of any three bodies:

kikesks = 1. (1—6)

Suppose that body 1 is the unit mass. Then if bodies 2 and 3 interact
with each other, we find, using Eqs. (1-4), (1-6), and (1-5),

iz/ja = —ky;
_ 1
Ferok s (1-7)
= —kis/kiz
= _M3ZM2.




