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PREFACE

The study of convex sets is a fairly recent development in the history of
mathematics. While a few important results date from the late 1800s, the first
systematic study was the German book Theorie der konvexen Korper by
Bonnesen and Fenchel in 1934. In the 1940s and 1950s many useful applica-
tions of convex sets were discovered, particularly in the field of optimization.
The importance of these applications has in turn sparked a renewed interest in
the theory of convex sets.

The relative youth of convexity has both good and bad implications for the
interested student. Unlike most older branches of mathematics, there is not a
vast body of background material that must be mastered before the student
can reach significant unsolved problems. Indeed, even high school students can
understand some of the basic results. Certainly upper level undergraduates
have all the tools necessary to explore the properties of convex sets. This is
good! Unfortunately, however, since the subject is so new, it has not yet
“filtered down” beneath the graduate level in any comprehensive way. To be
sure, there are several undergraduate books that devote two or three chapters
to some aspects of convex sets, but there is no text at this level which has
convex sets and their applications as its unifying theme. It is this void that the
present book seeks to fill.

The mathematical prerequisites for our study are twofold: linear algebra
and basic point-set topology. The linear algebra is important because we will
be studying convex subsets of n-dimensional Euclidean space. The reader
should be familiar with vectors and their inner product. The topological
concepts we will encounter most frequently are open sets, closed sets, and
compactness. Occasionally we will need to refer to continuity, convergence of
sequences, or connectedness. These topics are typically covered in courses such
as Advanced Calculus or Introductory Topology.

While the intent of this book is to introduce the reader to the broad scope of
convexity, it certainly cannot hope to be exhaustive. The selection of topics has
been influenced by the following goals: The material should be accessible to
students with the aforementioned background; the material should lead the
student to open questions and unsolved problems; and the material should
highlight diverse applications. The degree to which the latter two goals are
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attained varies from chapter to chapter. For example, Chapter 4 on
Kirchberger-type theorems includes few applications, but it does advance to
the very edge of current mathematical research. On the other hand, the
investigation of polytopes has progressed quite rapidly and so Chapter 8 can
only be considered a brief introduction to the subject. Chapter 10 on optimiza-
tion includes no unsolved problems, but has a major emphasis on applications.

For the past six years the material in this book has been used as a text in an
upper-level undergraduate course in convexity. Since there is more material
than can be covered in a three-unit semester course, the emphasis has varied
from year to year depending on which topics were included. As a result of this
flexibility, the material can be used as a geometry text for secondary teachers,
as a resource for selected topics in applications, and as a bridge to higher
mathematics for those continuing on to graduate school.

Throughout the book, the material is presented with the undergraduate
student in mind. This is not intended to imply a lack of rigor, but rather to
explain the inclusion of more examples and elementary exercises than would
be typical in a graduate text. It is recognized that a course in convexity is more
frequently found at the graduate level, but our attempt to make the material as
clear and accessible as possible should not detract from its usefulness at this
higher level as well. The exercises include not only computational problems,
but also proofs requiring various levels of sophistication. The answers to many
of the exercises are found at the back of the book, as are hints and references
to the literature.

The first three chapters of the book form the foundation for all that follows.
We begin in Chapter 1 by reviewing the fundamentals of linear algebra and
topology. This enables us to establish our notation and leads naturally into the
basic definition and properties of convex sets. Chapter 2 develops the im-
portant relationships between hyperplanes and convex sets, and this is applied
in the following chapter to the theorems of Helly and Kirchberger.

Beginning with Chapter 4, the chapters become relatively independent of
each other. Each chapter develops a particular aspect or application of convex
sets. In Chapter 4 we look at several Kirchberger-type theorems in which the
separating hyperplanes have been replaced by other geometrical figures. The
results presented in this chapter are very recent, having only appeared in the
literature in the last couple of years. Virtually any question that is posed
beyond the scope of the text opens the door to an unsolved problem. (The
answers to these will not be found in the back of the book!)

Chapter 5 investigates a number of topics which have had historical
significance in the plane. After looking at sets of constant width and universal
covers, we solve the classical isoperimetric problem under the assumption that
a set of maximal area with fixed perimeter exists. In Chapter 6 we develop
some of the tools necessary to prove the existence of such an extremal set.

There are many different ways to characterize convex sets in terms of local
properties, and these are presented in Chapter 7. Chapter 8 introduces us to
the basic properties of polytopes and gives special attention to how cubes,
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FUNDAMENTALS

A study of convex sets can be undertaken in a variety of settings. The only
necessary requirement is the presence of a linear structure, namely, a linear (or
vector) space. Indeed, many interesting and useful results can be proved in this
general context. At the other extreme are those concepts which seem to find
their fulfillment in the Cartesian plane or three-space. We will chart a course
somewhere in between these extremes and pursue our study of convex sets in
n-dimensional Euclidean space. This setting is broad enough to include many
of the important applications of convex sets, yet narrow enough to simplify
many of the proofs. Very often the greatest difficulty in extending a result to
n-dimensional spaces is encountered in going from two to three dimensions,
and here our intuition is more reliable and we are aided by the ability to draw
pictures. Whenever a new concept or result is presented, one should im-
mediately construct examples in two and three dimensions to get a better
“feeling” for the ideas involved.

SECTION 1. LINEAR ALGEBRA AND TOPOLOGY

The collection of all ordered n-tuples of real numbers (for » = 1,2,3,... ) can
be made into the real linear space R” by defining («;,..., «,) + (B,-.., B,)
=(a, +Byy...,a,t B,) and AMay, ..., a,) = (Aay,..., Aa,) for any n-tuples
(ay,...,a,) and (B,,...,B,) and any real number A. We define the inner
product (x, y) of x = (a,,...,a,) and y = (B,,..., B,) to be the real number
(x, yy=Z!_ a,;B;. The linear space R" together with the inner product just
defined is called n-dimensional Euclidean space, and is denoted by E”. The
n-tuples in E” are referred to as points or vectors, interchangeably.

Throughout this book we will be dealing with subsets of n-dimensional
Euclidean space unless otherwise indicated. If the particular dimension is
important, it will be specified. Otherwise, the reader may assume that the
context is E”.

We will usually use lowercase letters such as x, y, z to denote points (or
vectors) in E”. Occasionally, x and y will be used as real variables when giving
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examples in E%. For example we may write the linear equation 2x + 3y = 4.
The context should make the usage clear.

Capitals like A4, B, C will denote subsets of E", and Greek letters such as
a, B, 8 will denote real scalars. The origin (0,0, ..., 0) will be denoted by 6, and
the empty set by @. We will write A C B to denote that A4 is a subset (proper
or improper) of B. The shorthand “iff” means “if and only if,” and the
three-barred equal sign, =, is used in defining a new point, set, or function.
The set of real numbers will be denoted by R.

Our first theorem is a fundamental result from linear algebra, and its proof
is left as an exercise.

1.1. Theorem. The inner product of two vectors in E” has the following
properties for all x, y, zin E™:

(a) (x,x)=0and (x,x)=0iff x = 6.

(®) (x, y)= <y, x).

© (x+y z)=(x,z)+{y,z).

(d) <(ax, y)= a{x, y) for every real a.

1.2. Definition. If (x, y)= 0, then x and y are said to be orthogonal to each
other.

By using the inner product in E” we can talk about the “size” of a vector.
Specifically, we define the norm of a vector as follows:

1.3. Definition. The norm of a vector x (denoted by [l x||) is given by
x| = (x, x)!/2. If || x|| = 1, then x is called a unit vector.

The following properties of the norm are very useful:

1.4. Theorem. For all vectors x and y and real scalar a, the following hold:
(@ lixll>0if x5 @, and ||6]] = 0.
(b) llax|l =|a|llxI.
© lx+yl<IlxIl+ Iyl
(d) (x, y)=llx|lllyllcos y, where y is the angle between the vectors x
and y.

PROOF. Parts (a) and (b) follow directly from the definition, and part (c)
follows from the Schwarz inequality:

(Sonf <[ )

i=1 i=1 i=1

Part (d) follows from the law of cosines. The details are left as an exercise. W
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By using the preceding norm we can define the distance between two points
as follows:

1.5. Definition. If x, y € E”, then the distance from x to y, denoted by
d(x, y), is given by

d(x, y)=llx—yll.
In terms of the inner product we have
d(x, y) = {x = y; x — y)¥?,
and in terms of coordinates we have
n 1/2
d(x,y) =| 2 (o~ ﬁ,—)z] :

where x = (a,,...,a,) and y = (B,,..., B,).

Examples

1. If n = 1, then the distance from x to y is just

[(x=»)]"*=|x—»|.

2. If n =2, then the distance from x to y is given by the usual formula
resulting from the Pythagorean Theorem. (See Figure 1.1.) The length of
side a is | @y — B,|. The length of side b is | @, — B,]|. Thus the length of

the hypotenuse cis d(x, y) = \/(a, - ,3|)2 + (@, — B, )2-

x = (o, ap)

y=66) . —* e, B)

Figure 1.1.
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1.6. Theorem. The distance function d has the following properties for all
x, y,zin E™

(@) d(x,y)=0and d(x, y)=0iff x = y.

(b) d(x,y)=d(y,x).

(© d(x,y)=<d(x,z)+d(z, y)

(d) d(Ax, Ay)=|A|d(x, y) for every real A.

() dix+z,y+z)=d(x, y)
PROOF. Parts (a) and (b) follow directly from Theorem 1.1. Part (c) is called
the Triangle Inequality and says intuitively that the length of one side of a
triangle is less than or equal to the sum of the lengths of the other two sides.

(See Figure 1.2.) The proof of parts (c) and (d) follow from Theorem 1.4. Part
(e) follows directly from the definition. W

\:c.y\
4 d(z,y)

d(x,z) Figure 1.2.

Using the distance function we can define a topology for E” just as we
would for any other metric space.

1.7. Definition. For any x € E" and 8§ > 0, the open ball B(x, §) with center
x and radius § is given by

B(x,8) ={y €E":d(x, y) <8}.

1.8. Definition. A point x is an interior point of the set S if there exists a
8 > 0 such that B(x, §) C S.

1.9. Definition. A set S is open if each of its points is an interior point of S.

1.10. Definition. The collection of all open subsets of E” as defined above is
called the usual topology for E”. If S is a nonempty subset of E”, then the
relative topology on S is the collection of sets U such that U = S N V, where V
is open in E”.

It is easy to see that open balls, the whole space E”, and the empty set @
are open sets. (See Exercise 1.5.) The union of any collection of open sets is an
open set; the intersection of any finite collection of open sets is an open set.

1.11. Definition. A set S is closed if its complement ~S =E"~ S =
{x: x EE" and x & S} is open.
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It is easy to see that all finite sets of points in E”, the whole space E”, and
the empty set @ are closed sets. (See Exercise 1.6.) The intersection of any
collection of closed sets is a closed set; the union of any finite collection of
closed sets is a closed set. It is possible for a set to be neither open nor closed.

1.12. Definition. A set S is bounded if there exists a § >0 such that
S C B(4,9).

Examples. Consider the following subsets of E*:

A={(x, y): (x =4’ + (y +2)* <2}
B={(x,y):1<x<2and 1 <y=<3)}
C={(x,y):x+2y<4d)}

(See Figure 1.3.) The sets 4 and B are both bounded. Set C is not bounded. Set
A is the open ball with center (3, —2) and radius y2, and is an open set. The
set C is closed, and set B is neither open nor closed.

Figure 1.3.

1.13. Definition. The interior of a set S is the union of all the open sets
contained in S. The closure of S is the intersection of all the closed sets
containing S. The interior of § is denoted by int S and the closure of S by cl S.

It follows easily from the definitions that the interior of S is the set of all
interior points of S. Also, a point x is in cl S iff for every § > 0, the open ball
B(x, §) contains at least one point of S.
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1.14. Definition. A function f: E" — E™ is continuous on E" iff f ~'(U) is
an open subset of E” whenever U is an open subset of E™.

This definition of continuity is equivalent to the familiar -8 definition,
which in terms of open balls becomes: f is continuous at x € E”" iff for every
e > 0 there exists a & > 0 such that f(B(x, §)) C B( f(x), €). If f is continuous
at each point of a set A, then fis continuous on 4. We also recall that if {x,} is
a sequence of points in E” which converges to x and if f is continuous on E”,
then { f(x,)} converges to f(x).

The fundamental theorem relating the linear and topological structures is
the following:

1.15. Theorem. Each of the following functions is continuous:

(a) f: E" X E" — E" defined by f(x, y) = x + y.

(b) For any fixed a € E”, f,: E" — E" defined by f(x) = a + x.

(c) For any fixed A € R, f,: E" — E" defined by f,(x) = Ax.

(d) For any fixed x, y EE”", f: R — E" defined by f(A) =Ax +

(1—=2A)y.

PROOF. (a) Given € >0, let § = ¢/2. Let (x,, ),) be a point in E” X E”".
Then for any x and y in E”, if d((x, y), (x4, ¥,)) < & we have

1/2
d((x, ¥). (x0s 30)) = {[d(x, x0)]* +[d(y, 3]’}
so that d(x, x,) < & and d(y, y,) < 8. It follows that
dx+y,xy+ty)<d(x+y x+y)+dx+y,xo+ )

=d(y, y,) +d(x, xy)

<8§+d=c¢.
Thus if (x, y) € B((x,, ),), 8), then f(x, y) € B(f(xq, ¥y), €) and f is con-
tinuous at (x,, y,). Since (x,, y,) was an arbitrary point in E”, fis continuous.

(b) This is just a special case of (a).

(c)Lete>0andlet x EE". If A # 0, let § = ¢/|A|. Then for any y € E"
such that d(x, y) < 8 we have

d(f)\(x)’ f)\(y)) = d(Ax’ )\)’) :|}\|d(x, y) <|A|ﬁ = E.

If A =0, then d( fy(x), fi(y)) =d(6,0) = 0 <e for any 8. In both cases we
have f,(B(x, 8)) C B( fy(x), €), and f, is continuous.
(d) This proof is straightforward and is left as an exercise. W
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1.16. Definition. If 4, B C E” and A € R, we define

A+B={x+y:xEAandy € B}
Ad ={Ax:x € A}.

If A consists of a single point, 4 = {x}, then we often write x + B for 4 + B.
The set x + B is called a translate of B. The set A 4 is called a scalar multiple of
A. If A # 0, the set x + A A4 is said to be homothetic to 4.

1.17. Theorem. Each set homothetic to an open set is open.

PROOF. For any x € E” and A # 0, the function f given by f(y) = x + Ay
is continuous by Theorem 1.15. For A # 0, its inverse f ~'(z) = —(1/A)x +
(1/A)z is also continuous. This implies that the original function maps open
sets onto open sets. W

1.18. Corollary. Each set homothetic to a closed set is closed.

PROOF. For A # 0, the function f(y) = x + Ay is one-to-one. Thus f(~ A)
=~ f(A) for each A C E" and the corollary follows immediately from the
definition of a closed set. H

In trying to visualize the sum A4 + B of two sets, it is often helpful to
express the sum as a union of translates:

A+B=U (x+B)=U (4+y)

xXEA yEB

Examples
(See Figure 1.4.)

Figure 1.4.



