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PREFACE

Since the publication of Atkinson's book "Multiparameter Eigenvalue Problems,

Vol. I" in 1972, multiparameter spectral theory has become a subject of growing
interest. Several authors have made important contributions to the theory; see the
references at the end of this book. There are also two monographs of Sleeman (1978a)
and McGhee and Picard (1988) on this subject.

The contents of the present book can be called "classical multiparameter theory"
to distinguish it from more recent developments in multiparameter theory. The book
contains the major results of Atkinson's book (most of them are proved differently),
several of the contributions made in the last years and some new results. It is thought
as a supplenent to the excellent book of Atkinson which has the only drawback that we
are waiting for volume II for quite a while.

We study two problems: the existence of eigenvalues and the expansion in series
of eigenvectors. Each of these problems is treated for multiparameter eigenvalue
problems involving (i) Hermitian matrices (ii) compact Hermitian operators, in
particular, integral operators (iii) semibounded selfadjoint operators with compact
resolvent, in particular, differential operators. Alltogether this leads to six
Cchapters.

It is not assumed that the reader knows already some multiparameter spectral
theory but it is supposed that the reader is familiar with the usual one-parameter
eigenvalue problems for compact Hermitian operators and their inverses. Brouwer's
degree of maps will be used in the first two chapters. Basic properties of the tensor
product of linear spaces will be needed in Chapters 4,5,6.

Theorems in multiparameter spectral theory are usually proved under a so-called
definiteness condition. It was my aim to prove these theorems under definiteness
conditions as weak as possible. For instance, a bounded Hermitian operator A on a
Hilbert space H with inner product < , > is positive definite if <Au,u> is
positive for all unit vectors u . The operator A is strictly positive definite
if there is a positive e such that <Au,u> > e for all unit vectors u . In such
a situation I prefer to assume that A 1is positive definite even if the proofs would

become simpler under strict definiteness. It is this weakening of definiteness
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conditions which leads to some new results. In particular, the abstract oscillation
theorems of the Chapters 2 and 3 under local definiteness in the strong sense and the
expansion theorems of the Chapters 5 and 6 under left definiteness are new. More de-
tailed informations on the correspondence of the presented results with those of the
literature are given in the Notes at the end of each chapter.

To avoid misunderstandings I have to say that the contents of this small book are
far from being complete in any sense. There are many interesting fields in multipara-
meter theory which are not contained, for example, eigenvalue problems involving non-
symmetric operators (see Atkinson (1968) and Isaev (1980)), eigenvalue problems
having a continuous spectrum (see Browne (1977a), (1977b), Volkmer (1982) and McGhee
and Picard (1988)), nonlinear problems (see Binding (1980b) and Browne and Sleeman
(1979b), (1980b), (1981)), indefinite problems (see Binding and Seddighi (1987a) and
Faierman and Roach (1987), (1988a)) and .......... Perhaps we should add "Vol. I" to
the title of the book.

Finally, I wish to thank my colleagues working in multiparameter theory for their
stimulation during the last years at various meetings. In particular, I thank Paul
Binding and Patrick Browne for several fruitful discussions during my stay at the
University of Calgary (March - July 1984). The results of the first three chapters

are based on a joint paper with Binding (1986).

Essen, September 1988 Hans Volkmer
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INTRODUCTION

A multiparameter eigenvalue problem contains a finite number of spectral para-
meters whose number is denoted by k throughout the text. If k 1is equal to 1
then we obtain an ordinary one-parameter eigenvalue problem. Therefore the simplest
“nontrivial" case is when k is equal to 2 . The following two-parameter examples
illustrate some of the concepts and results of multiparameter spectral theory.

Let us consider the eigenvalue problem

B 3
Mo Apg X1+ A Aj X  FAp A, x =0, 0 x €00, (1)
_ 2 .
Rs A20 Xo 0 A21 Xy * Ay A22 X, =0 , 0% X, € ¢, (2)
where
( ¢
4 0 0 1 0 0 0 1 0
Alo 2 0 0 0 5 All 0 6 0 s A12 = 1 0 1 5
0 0 0 0 0 1 0 1 0
\
(20 o0 IR &) (7 o}
A . A = _ A
20 0 0 2L 15 o = g 1J

The eigenvalues are nonzero tuples A = (AO,AI,AZ) of complex numbers such that (1)
and (2) can be solved simultaneously. It should be observed that an "eigenvalue" is a
vector and not a scalar. The notion "eigenvector" is reserved for the tensor products
of the solutions X, and X, of (1) and (2), respectively. There are three spectral
parameters Agsrysty but they only count for two because (1),(2) is written in a
homogeneous formulation i.e. if A is an eigenvalue then also aX 1is one for each
nonzero complex number o . Our example is so simple that we can calculate the
eigenvalues explicitely. Of course, this will be possible only in a very limited
number of examples. We first determine the values of Agoryaho such that the

matrix

A A

o Po * 2 Aip tAg A (3)

becomes singular. These values are given by



2 2
(4x  + le) Ay = 6(4x_ + xl) A (4)
Similarly, the matrix
Ao A20 + A21 + A A22 (5)
is singular if
2 _ 2
I =204, + A5 . (6)

The eigenvalues X = (AO,Al,Az) are the simultaneous solutions of (4) and (6). It is
easily seen that o is nonzero for eigenvalues (AO,AI,AZ) . Hence we can go over
from the homogeneous formulation of the eigenvalue problem (1),(2) to an inhomogeneous
one by setting Re, = 1 . Now the eigenvalues (l,Al,AZ) have real components which

can be determined by a picture.




The curves indicated by 11 =1, 11 = 2, 11 = 3 consist of those pairs (xl,xz)
for which the ilth greatest eigenvalue of (3), counted according to multiplicity,
is equal to O . Similarly, the curves indicated by 12 = 1y 12 = 2 consist of the
pairs (Al,xz) for which the 12th greatest eigenvalue of (5) is 0 . The eigen-
values of problem (1),(2) correspond to the points of intersection of these eigen-
curves. For example, (-5,-5) lies on the curves il =1 and iz =1 . We say that
the eigenvalue (1,-5,-5) has index (11,12) = (1,1) . The eigenvalue (1,0,0) has
two indices, namely (11,i2) = (2,2) and (11,12) = (3,2) . We say that the eigen-
value (1,0,0) has multiplicity 2

We see that, for every given index (11,12) " 11 =1,2,3, 12 = 1,2 , there is
exactly one eigenvalue (l,xl,kz) which has index (11,12) . This is a special case
of the statement of Theorem 1.4.1 because our eigenvalue problem (1),(2) is definite

with respect to (1,0,0) i.e. we have

/ \
| 1 0 0 ;
|
det <l\10u1,u1>1 <A11u1,u1>1 <A12u1,u1>1 ; >3
AogUpalip>y  Poplpslp>y  <AyslnsUn>y J

for all unit vectors u; € H1 and u, € H2 , where <, > and <, >, are the
usual inner products in 63 and C2 , respectively.

There is also an expansion theorem for the eigenvalue problem (1),(2). For every
eigenvalue (l,Al,xz) , we choose solutions X1s%p of (1),(2), respectively. For
the eigenvalue (1,0,0) of multiplicity 2 , we take two linear independent
solutions Xq of (1). Then we obtain 6 decomposable tensors x| ® X, which form
a basis of the tensor product @3 ® GZ . This is a special case of the results of
Section 4.5.

Multiparameter eigenvalue problems arise in mathematical physics if the metnod of
separation of variables can be used to solve boundary eigenvalue problems. Usually,
we have a partial differential equation in k independent variables which contains
one spectral paiameter. If it is possible to apply the method of separation of
variables to solve the equation then we obtain k ordinary differential equations

linked by k-1 separation constants and the original spectral parameter. Together



we have k parameters which are the spectral parameters of a multiparameter eigen-
value problem. In many cases the original equation must first be transformed in a
suitable coordinate system before the separation process is possible. It is not part
of multiparameter theory to find such coordinate systems. Concerning this problem we
refer to Miller (1968) and Kalnins (1986). In multiparameter spectral theory one starts
with a given system of k equations linked by k spectral parameters. Then, if neces-
sary, the separation process is reversed to find the associated partial differential
operators. The above remarks show that multiparameter spectral theory is closely
related to the spectral theory of partial differential operators. There is also a rela-
tionship to the theory of special functions because these functions are the solutions

of ordinary differential equations which arise from the separation of the wave equation.

As an example, let us consider the problem of the vibrating elliptic membrane with
fixed boundary; see [Meixner and Schafke (1954), Section 4.31]. Let the membrane be

given by

8 = ((npany) € RE | (ny/e)? + (nyrep)? < 1,

where it is assumed that Cp >¢Cp > 0 . Then our boundary eigenvalue problem

consists in finding values of v such that the two-dimensional wave equation

BZY azy
g—z' t —5 tvy =0 (7)
" g

has a nontrivial solution y defined on Q@ satisfying the boundary condition
y(nl,nz) =0 for (nl,nz) € 3q . (8)
We introduce ellipsoidal coordinates £1,6, defined by
np=c¢ cosh £1€0S &y 5 My = C sinhg1 sing2 5

where (%c,0), ¢ > 0 , denote the foci of the ellipse 3@ . Let b be the positive
number satisfying c; = c coshb , ¢, = c sinhb . Then the map (&1580) = (nsny)
is one-to-one from the open rectangle ]O0,b[ x ]-w,n[ onto the interior of @
minus the cut from (-cl,o) to (c,0) . The behaviour on the boundary is shown by

the following picture.
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€ n
[
m | <
I 4 A 2
___AA_A________dz_; Cl —
| g
T5 .
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| 2 1
|

Setting
Y(”l’“z) = X(gl’gz) >

the equation (7) transforms into

2 2 2

37X 37 x cv -
ey (cosh 251 - cos 252 ) x =0
I 9E,

If we assume a solution of this equation of the form
X(El,iz) = Xl(gl) Xz(gz) s
we obtain for X1 and Xy the ordinary differential equations
x{ + (lecoshZE1 - AZ) X; = 0o ,
x% - (lecos 252 - AZ) Xo = 0, (10)

where A, s the separation constant and 4A1 = c2v . Equation (10) is Mathieu's
differential equation and (9) is its modified form. The function X, has to be a
periodic function with period 2n . The solutions of (10) with period 2n are

usually divided into the following four sets.



I: xé(O) = Xé(n/Z) =0 i. e X, 1s even and of period = , j
Iis xé(O) = xz(n/Z) =0 i.e X, s even and of half-period = ,
7 (11)
III: xz(O) = xé(n/Z) =0 j. e X5 is odd and of half-period = |, }
Iv: x2(0) = Xz(v/Z) =0 1. e. X5 is odd and of period = J
see [Meixner and Schafke (1954), pages 108, 149].
Further, the boundary condition (8) yields
xl(b) = 0 . (12)
Since y s continuously differentiable in the neighborhood of the focal line
(nl,O), -c<np<c o, the corresponding function x satisfies
- .
K0:5) = X(0:-55) » FE(0:5p) = - ;Tfl(o,—az)
Hence we obtain the boundary conditions
xi(O) = 0 in the cases I , II , .L
(13

>
—
—
o
~—
1

0 in the cases III , IV

J

In each of the four cases I, II, III, IV we have thus obtained a two-parameter
Sturm-Liouville eigenvalue problem (9) , (10), (11), (12), (13). For example, in case
I our eigenvalue problem consists in finding values of M and Ay such that
equation (9) has a nontrivial solution satisfying the boundary conditions xi(O) =0,
xl(b) = 0 and, simultaneously, (10) has a nontrivial solution satisfying xé(O) =0,
xé(n/Z) =0 . If (kl,xz) is an eigenvalue then =4 Al/c2 is an eigenvalue of
the original eigenvalue problem (7), (8). Using expansion theorems for the two-para-
meter eigenvalue problems, we can also show that the converse statement is true: if
v is an eigenvalue of (7), (8) then there exists an eigenvalue (AI,AZ) of one of
the four two-parameter problems such that v = 4A1 /c2

There holds the following result concerning the existence of eigenvalues in each
of the four cases. For each pair nysny of nonnegative integers, there are uniquely
determined real numbers A s Ay such that (9) admits a solution satisfying the
boundary conditions (12), (13) and having exactly n, zeros in the open interval

J0,b[ and such that (10) admits a solution satisfying the boundary conditions (11)



and having exactly n, zeros in 10,7/2[ . This result is a particular case of the
Theorems 3.5.1, 3.5.2 because all four eigenvalue problems are right definite accord-
ing to Theorem 3.6.2 (ii) :

2 cosh El -1

dy(6156,) := det >0 on 10,b[ x 10,7/2[

-2 cos gz 1
In Section 6.8 we shall prove that every function in L2([O,b] x [0,n/2]) can be
expanded in a series of products xl(il)xz(az) of solutions of (9),(10) associated
with the countable number of eigenvalues. The series converges with respect to the
inner product

/2 -
| dy(51585) %(51565) ¥(61,6) dg, dg)
0

™

@0(X3Y) o=

oo

We can also apply the results of Section 6.7 to obtain expansions which converge with
respect to the norm of suitably chosen Sobolev spaces.
One of the most interesting two-parameter eigenvalue problems is that which leads

to the definition of Lamé polynomials. We refer to Sections 3.8 and 6.10.



CHAPTER 1

MULTIPARAMETER EIGENVALUE PROBLEMS FOR HERMITIAN MATRICES

1.1  Introduction

We suppose given k Tinear spaces Hr’ r=1,...,k , all over the complex field,
nonzero, and of finite dimension. In each Hr there is an inner product < , M
with associated unit sphere Ur . For each r , let Ars’ s =0,...,k , be a set
of k+1 Hermitian operators on Hr

We shall study the multiparameter eigenvalue problem
k
T A A _u =0, u €U, r=1,...,k . (1.1.1)

We shall use the term eigenvalue to denote a nonzero (k+1l)-tuple of scalars
A= (Ao,...,\k) such that there exist vectors u,. € Ur’ r=1,...,k , satisfying
the k equations (1.1.1)

In most cases the eigenvalue problem (1.1.1) will be treated under the hypothesis

of local definiteness. We call (1.1.1) Zocally definite if the real k by k+l matrix

(“‘10“1’“1’1 . ¥ s <Apupur™ ;
t ) : . (1.1.2)
| . ; |
| <Prot Uk Ce Pt Uik |
is of maximal rank for all wu = (ul,...,uk) €V := U1 X ... X Uk , 1. e.
rank W(u) = k for all ueU . (1.1.3)

In the next section we show that the eigenvalues of a Tocally definite problem
(1.1.1) can be indexed in a natural manner, and in Theorem 1.2.3 we prove that the
eigenvalues are uniquely determined by a signed index. In Section 1.3 we provide the
basic properties of Brouwer's degree of maps which we need in order to prove Theorem
1.4.1 on the existence of eigenvalues of given signed index. Subsequently, we note
two corollaries of the existence theorem, a perturbation theorem and a criterion for
the problem (1.1.1) to be locally definite. In Section 1.5 we consider definite pro-

blems. In Section 1.6 we refer to the literature.



1.2 Indexed eigenvalues

We consider the eigenvalue problem (1.1.1). For given 1\ = (Ao,...,xk) € D2k+1
and r = 1,...,k , we list the eigenvalues of the Hermitian operator
: (1.2.1)
Z A A #Ce
sp S TS
in decreasing order, according to multiplicity, as
Pp(21) > pa(2,2) > .. >0 (2, dim o) - (1.2.2)
Then a nonzero 1 € H2k+1 ic an eigenvalue of (1.1.1) if and only if there exists a
multiindey
i-= (11, ) ir =1,....dimd, , r=1, ko (1.2.3)
such that
or(A,ir) =0 forevery r=1,...,k . (1.2.4)

If the equations (1.2.4) are satisfied then we say that the eigenvalue A has index i.
In general, an eigenvalue can have several indices. The number of these indices is
called the multiplicity of the eigenvalue.

The maximum-minimum-principle for the eigenvalues of the Hermitian operators

(1.2.1) yields the useful representation

pp(haiy) = max{miniw (u)x [ u. € F U} | FoeHa dimFo=d 3, (1.2.5)

th

where wr(ur) denotes the r= row of the matrix (1.1.2) and w (ur)A is the usual

r
product of a row and column vector. Here and in the sequel we consider A as a
column vector. For the maximum-minimum-principle we refer to [Weinstein and Stenger
(1972),Chapter 2]. There it is called minimum-maximum-principle because the eigen-
values are Tisted in increasing order.

We now turn to consequences of local definiteness of the eigenvalue problem
(1.1.1). Let us first express the rank condition (1.1.3) by determinants as usual ,

For u€eU and s =0,...,k , we denote by (-1)S 6S(u) the determinant of the

matrix W(u) with g column deleted. Then the eigenvalue problem is locally definite



if and only if the column vector
§(u) := (6O(u),...,6k(u)) is nonzero for all u €U . (1.2.6)

We also know from the elementary theory of matrices that Tocal definiteness is equi-

valent to the condition that
Ker W(u) = {a &(u) | « complex} for all ue€eU , (1.2.7)

where Ker W(u) denotes the kernel of the matrix W(u) . In the rest of this section
we shall assume that (1.1.1) is locally definite.

If A s an eigenvalue then the equations (1.1.1) hold for some u = (ul""’”k)
It follows immediately that W(u)x = 0 . Hence, by (1.2.7), x is a complex multiple
of &(u) , a vector which has real components. Therefore, and since the eigenvalue
problem (1.1.1) is homogeneous in A , it will be sufficient to search eigenvalues

k k+1

in the unit sphere S° of R

We now define three subsets of Sk which will play the crucial role in this

chapter:
P :={x€ sk | W(u)x =0 for some ue€ U}l ,
P* = (s(u) 7 lis(u)ll | ueEuUr ,
P™ = {-8(u) / lls(u)ll | ueuy=-pt
where || |l denotes the Euclidean norm in Rk+1 . We note that P contains all
k

eigenvalues of (1.1.1) lying in S

LEMMA 1.2.1. Assume that the eigenvalue problem (1.1.1) is locally definite. Then

. L . . +
P Zs the disjoint union of the compact and arcwise comnected sets P and P

Proof. It follows from (1.2.7) that P is the union of P* and P~ . In order to
prove that p* and P are disjoint, let A € P and Tet Y be the set of all

u€ U such that W(u)x =0 . This set is a product Y = Yix ooox Yk » where

Y. = {u, € U, | w



1

The following general Lemma 1.2.2 shows that Yr is arcwise connected for every r .
Hence Y s arcwise connected, too. Now there is a continuous real-valued function
a on Y such that A = a(u)s(u) forall ue€yY . Since Y 1is connected and o
has no zeros, « has constant sign on Y . This proves that X cannot belong to
both P* and P~

The sets PT and P~ are continuous images of the compact and arcwise connected
set U . Hence P* and P are compact and arcwise connected, too. We note that
U 1is compact because the spaces H .  are finite dimensional, and that U 1is arcwise

connected because of Lemma 1.2.2.o

LEMMA 1.2.2. Let H be a complex linear space with imner product < , > and

unitt sphere U . Let V be a Hermitian sesquilinear form on H . Then the set
Y ={ue€elU]| yplu,u) =0}
is arcwise comnected. In particular, U <s arcwise connected.

Proof. Let x,y € Y . If x,y are linearly dependent then there is a real number 6
such that y = exp(i8)x . Then the continuous path exp(ite)x, 0 <t <1 , connects
x and y within Y . Now let x,y be linearly independent. Then we choose the

real number 8 such that the real part of exp(ig)y(x,y) vanishes. The segment

z(t) = t exp(is)x + (1-t)y, O0<t<1 ,

connects y and exp(ige)x , does not cross 0 and satisfies wy(z(t), z(t)) =0
for all 0 <t <1 . Hence the continuous path z(t) / <z{t), z(t)>1/2 connects y
and exp(ie)x within Y . By what we have shown in the first part of the proof, we
can also connect x and y by a continuous path within Y . This shows that Y

is arcwise connected. Choosing ¢ = 0 , we see that U is arcwise connected. o

If » dsin P or P™ then we say that A has signum +1 or -1
respectively. We now are in a position to prove the uniqueness of an eigenvalue of

given signed index (i,o) , i. e. an eigenvalue which has index i and signum o

THEOREM 1.2.3. Let the eigenvalue problem (1.1.1) be locally definite. Then there

18 at most one eigenvalue in Sk of given signed index.



