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PREFACE

The Advanced Course took place from March 4 to 15, 1974

and was organized by the Mathematical Institute of the
Technical UniQersity Munich and the Leibniz Cdmputing
Center of the Bavarian Academy of Sciences, in co-operation
with the European Communities, sponsored by the Ministry
for Research and Technology of the Federal Republic of
Germany and by the European Research 0ffice, London.

Due to the great success of the first Course, a repetition
was held from March 3 to 15, 1975.
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CHAPTER 1.A
COMPILER CONSTRUCTION

W. M. McKeeman
The University of California at
Santa Cruz
U. S. A.

"If PL/1 is the Fatal Disease,
then perhaps Algo1-68 is
Capital Punishment".

An Anonymous Compiler Writer

1. DEFINITIONS

1.1. SOURCE AND TARGET LANGUAGES

A compiler is a program, written in an implementation language, accepting text in a
source language and producing text in a target language. Language description
languages are used to define all of these 1anguéges and themselves as well. The
source language is an algorithmic language to be used by programmers. The target
language is suitable for execution by some particular computer.

If the source and target languages are reasonably simple, and well matched to each
other, the compiler can be short and easy to implement (See Section 1.A.2 of these
notes). The more complex the requirements become, the more elaborate the compiler
must be and, the more elaborate the compiler, the higher the payoff in applying the
techniques of structured programming.




1.2. IMPLEMENTATION LANGUAGES

Compilers can, and have, been written in almost every programming language, but the
use of structured programming techniques is dependent upon the implementation lang-
uage being able to express structure. There are some existing languages which were
explicitly designed for the task of compiler writing (FSL [Fe]dman 66],XPL [McKeemar
70], CDL [Koster 71b], and some for structuring (Pascal [Nirth 71], Algol 68

[van Wijngaarden 68]). The criterion for choosing an implementation language is
quite straight forward: it should minimize the implementation effort and maximize
the quality of the compiler. Lacking explicit knowledge of this kind, the compiler
writer is advised to seek a language as close as possible to the ones mentioned abo:
The number, quality and availability of such Tanguages is generally on the increase.
It may be advantageous to write a compiler to run on a different machine than the

target text will run on if better tools can thus be used (especially common for ver)
small target machines), In any case, we shall simply assume an appropriate implemer

tation language is available.

Since there are so many languages involved, and thus so many translations, we need ¢
notation to keep the interactions straight. A given translator has three main
languages (SL, TL, IL above) which are objects of the prepositions from, to and in
respectively.. A T diagram of the form

compiler name

Sl - TL

IL

gives all three [Bratman 6ﬂ . 1f the compiler in Section 1.A.2 (below) is called
Demo, then it can be described by the diagram

Demo
assignment » zero-address
statement instructions
Algol-

68




Now a compiler written in Algol1-68 is of no use unless there is also a running com-
piler for Algol-68 available. Suppose it is on the Burroughs B5500. Then if we
apply it to the T above, we will get a new T as follows:

Demo Demo

assignment zero-address | assignment zero-address
statement code statement code

Munich Compiler

Algol | Algol TR440 TR440
268 -68 ™ machine |in a line
language [language

B5500
machine
language

where the arms of the middle T must match the tails of the Ts to the left and right.
Complicated, multistage, multilanguage, multimachine translation processes can be
described by appropriate cascades of such T diagrams [McKeeman 70 pp. ]6-18].

1.3 Langquage Defining Lanquages

Language defining languages are almost always based on grammars (see Chapter 2 of
these notes) but frequently have additional features designed to define the target
text (i.e., translation defining languages). Thus the distinction between language

definition and implementation language has not always been very clear. There was a
tradition at one point of time to define a programming language as "what the compiler
would translate" but this turned out to be of no value to the user who was not pre-
pared to explore the idiosyncracies of a compiler to be able to write programs. The
problem then has been to define languages without leaning on the compiler itself.




