F.L. Bauer - F.L. De Remer - A.P. Ershov - D. Gries
M. Griffiths - U. Hill - J. J. Horning - C. H. A. Koster
W.M. McKeeman - P.C.Poole - W. M. Waite

Compiler
Conrstruction

An Advanced Course

Edited by F.L. Bauer and J. Eickel

Second Edition

SpringerVerlag New York - Heidelberg - Berlin

L. Bauer - F. L. De Remer

P. Ershov - D. Gries - M. Griffiths
Hill - J. J. Horning - C. H. A. Koster
M. McKeeman - P. C. Poole
M. Waite "

Compiler
Construction

An Advanced Course

- Edited by F. L. Bauer and J. Eickel

Second Edition

r

Springer-Verlag |

New York Heidelberg Berlin

Editors

Prof. Dr. F. L. Bauer
Prof. Dr. J. Eickel
Mathematisches Institut
TU Miinchen
ArcisstraBe 21

8000 Miinchen 2/BRD

Originally published in the series

Lecture Notes in Computer Science Vol. 21
Springer-Verlag Berlin Heidelberg New York
First Edition: 1974

Second Edition: 1976

AMS Subject Classifications (1970): 00A10, 68-00, 79-02
CR Subject Classifications (1974): 4.12

ISBN 0-387-08046-0 Springer-Verlag New York - Heidelberg - Berlin
ISBN 3-540-08046-5 Springer-Verlag Berlin - Heidelberg-- New York

This work is subject to copyright. All rights are reserved, whether the whole
or part of the material is concerned, specifically those of translation, re-
printing, re-use of illustrations, broadcasting, reproduction by photocopying
machine or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other
than private use, a fee is payable to the publisher, the amount of the fee to
be determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1976

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 4321

PREFACE

The Advanced Course took place from March 4 to 15, 1974

and was organized by the Mathematical Institute of the
Technical UniQersity Munich and the Leibniz Cdmputing
Center of the Bavarian Academy of Sciences, in co-operation
with the European Communities, sponsored by the Ministry
for Research and Technology of the Federal Republic of
Germany and by the European Research 0ffice, London.

Due to the great success of the first Course, a repetition
was held from March 3 to 15, 1975.

W. M. McKeeman

F. L. DeRemer

Contents

CHAPTER 1.: INTRODUCTION

COMPILER CONSTRUCTION

Definitions

Source and Target Languages
Implementation Languages
Language Defining Languages
Recursive Descent Compilation
Introduction

Writing a Recursive Descent Compiler
Executing the Compiler
Extending the Technique
Modularization

Modular Documentation
Modular Programmer Assigrment
Medular Source Text

Modular Target Text
Intermodular Communication
Specification

"Need to Know"

Test Environment
Feedback-Free

Vertical Fragmentation

The Transformation PT—» AST
The Transformation AST—> ST
The Transformation ST—> ACT
The Transformation ACT—>ADT
The Transformation ADT —>SET
The Transformation SET — SCT
Horizontal Fragmentation
Equivalence Transformation
Evaluation

References

o

Do Do Do Do
PRl A

O W W W W
OWNO O U1 N Do MO M Do Y DD Do Do ok

.

Oy O Y

CHAPTER 2.: ANALYSIS

REVIEW OF FORMALISMS AND NOTATION

. Terminology and Definitions of Grammars
Unrestricted Rewriting Systems

The Chomsky Hierarchy

Phrase Structure Implied by Context—Free
Grammars

Regular Grammars and Regular Expressions
. Parsing

Syntactic Dominoes

Parsing Strategies

Ambiguity

Debugging a Grammar

Machines, Computational Complexity,
Relation to Grammars

Do Do Do Do ~ [N Y
P . . e .
W N WDy Do L D9 R

54

37
37
38

39
41
42
42
44
45
45

46

M. Griffiths

J. J. Horning

[N S AT AN

OSIEINIEINIE SO

DO Do DO G kd kbt b b Gy

S

[SNICN G RGN I N AN 1A

o

~

S

(SR Y

oo Do

L WD WM WD RN O WD kRGN D G DN M

> o o

Do ¢t
Q).RQ'\\VWNNQ}NL\UHCN%WL\D(NNHN

VI

4. Transduction Grammars

1. String-To-String Grammars
2. String-To-Tree Grammars
5. Meta—Grammars

1. Self-Describing Grammars
2. Practical Applications

References

LL(1) GRAMMARS AND ANALYSERS

Introduction

Predictive Analysis

Efficiency

Semantics

LL(1) Conditions

Decision Algorithm

Production of Analyser

Grammar Transformation
Elimination of Left Recursion
Factorisation and Substitution
Ordering

Semantic Insertion

Generation of Postfixed Notation
Symbol Table Insertion
Interpretation of Postfixed Expressions
Generalisation and Conclusion
Vienna Notation

LL(k) Grammars

Practical Results

References

LR GRAMMARS AND ANALYSERS

Intuitive Description
Definition of LR(k)

Items

States

Interpreting LR Tables
Form of Entries

Example

Constructing LR Tables

The LR(0) Constructor AZgortthm
Inttialization

Closure

Successor States
Accessible States

Dertving the Parsing Action Table
Adding Lookahead

Using the Follower Matrix
Using the Shift Entries
Adding Context to Items
Representing LR Tables
Matrix Forms

List Form

Efficiency Transformations
LR(0) Reduce States

Column Regularities

Row Regularities

Don't Cares

Column Reduction

46
47
48
50
50
53
56

85

85
86
86
87
88
88
90
93
93
94
94
94
94
95
96
96
97
97
98
98
98
99
99
100
100
100
101

L. DeRemer

L. DeRemer

3.

W W W™

~

NN NN

L N S WA]
. e

(A ANICAN

VII

6. Row Reduction 101
7. List Overlapping 101
8. Matriz Factoring 101
9. Eliminating Single Productions 101
5. Properties of LR Grammars and
Analysers 102
6. Modification to Obtain LR Grammars 103
1. Multiple-Use Separators 103
2 Compound Terminal Symbols 103
7 Comparison with other Techniques 104
1. Grammar Inclusions 104
2. Language Inclusions 105
3. Error Detection 106
4. Efficiency 106
8. Choice of a Syntactic Analysis
Technique 106
References 107
LEXICAL ANALYSIS 109
1. Scanning, Then Screening 109
2: Sereening 110
3. Seanning 111
.1. Lexical Grammars 111
.1. Tokens 112
2. A Regularity Condition 112
3. Converting Regular Grammars to
Regular Expressions 113
2. Generating Scanners Via LR Tech-—
niques 113
1. Using a Simplified LR Parser as
a Scanner 113
3. Hand-Written Scanners 117
4. Error Recovery «119
4. On Not Including 'Conversion Rou-
tines" in Lexical Analysers 119
References 120
TRANSFORMATIONAL GRAMMARS 121
L. Language Processing as Tree
Manipulation 121
.1. Lexical and Syntactical Processing 123
2. Standarization 123
.3. Flatting 124
2 Description of Subtree Transfor-—
mational Grammars 125
3. Compiler Structure 128
4. Further Examples of Transformatiors 129
1. Local Effects 129
2. Global Effects 129
3. Iterative Transformations 131
4. Extension to Regular Expresstons 133
5. Summary and Coneclusions 136
6. Appendix - Meta—Grammars and
PAL Grammars 137

References 145

C. H. A. Koster

W. M. Waite

W. M. Waite

M. Griffiths

Do Do DO Do DD DY MR D
s s s s s e s s w . .

fo Do Do Do Do Do

[N Y

.
[N
.

Oy N WD Do N WD D
e s e & e s & 9 2 @ e o e @

Do Do Do Do

AT
o N DN WD

VIII

TWO-LEVEL GRAMMARS

1. Context Sensitivity

On the Borderline between Syntax
and Semantics

Van Wigngaarden Grammars

One-Level Van Wijngaarden Grammars
Definition: 1VWG

Notation

Terminology

Properties

Example

Two-Level Van Wijngaarden Grammars
Definition: 2VWG

Notation

Terminology

Properties

Example: Assignment Statement
Example: Defining and Applied
Occurrences

Conclusion

References

[SN]

SEMANTIC ANALYSIS

Tree Traversal

Attribute Propagation

3. Operator Identtification and Coercion
References

Do

CHAPTER 3.: SYNTHESIS

RELATIONSHIP OF LANGUAGES TO MACHINES

Data Objects
Encodings
Primitive Modes
Mode Conversions
Formation Rules
Expressions
Names
Aggregates
Procedures
References

I;ACNNNMUJ[\')HH

RUN-TIME STORAGE MANAGEMENT

Introduction

Static Allocation
Dynamic Allocation
Block Linkage

Displays

Compaction of the Stack
Parameter Linkage
Labels

Aggregates

Arrays

Reference by Multiplication

146
146

146
148
148
148
148
148
149
149
150
150
150
150
151
152

152
156
156

157

158
162
165
168

170

172
172
176
181
182
182
185
187
189

193

195

197
197
198
200
203
206
208
209
210
210
211

IX

4.1.2. Reference by Code Words 213
4,1.3. Range Testing 214
4.2. Structures 215
5. Lists 215
5.1. Free Lists and Garbage 216
5.2. Storage Collapse 217
6. Parallel Processes 218
7. Conclusion 220
References 221
U. Hill SPECIAL RUN-TIME ORGANIZATION TECH-
NIQUES FOR ALGOL 68 222
1. Introduction 222
1.1. Short Outline of Data Storage Prin-
ciples 224
1.1.1. Fixed and Variable Parts of Objects 224
1.1.2. Modes and Objects in ALGOL 68 224
1.1.3. Static and Dynamic Data Storage
Areas 228
1.1.4. The Heap 231
1.2. Generative and Interpretative Hand—
ling 232
2. Special Objects in ALGOL 68 233
2.1. Flexible Arrays 233
2.2. Objects Generated by Slicing 233
2.3. Objects Generated by Rowing 234
2.4. Objects of Union Modes 235
3. Scopes of Values (Life—Time) 235
3.1. Definition 235
3.2. Checking the Scope Conditions 236
4. Scopes and Data Storage Allocation 237
4.1. Scope of Routines and Allocation of
Base Registers 237
4.2. Storage for Data ' 239
4.2.1. Local Objects Generated im the Block
which is their Scope 239
4.2.2. Local Objects Generated in an "Inner"
Block 240
4.2.3. TLocal Objects with Flexible Length 241
4.2.4. Global Objects 242
5. Special Topics 243
5.1. Results of Blocks and Procedure Calls?243
5.2. General Actual Parameters 244
5.3. Local Generators 245
5.4. General Mode Declarations 247
5.5. "Empty" Flexible Arrays 247
6. Garbage Collection 248
References 252
W. M. McKeeman SYMBOL TABLE ACCESS 253
1. Introduction 253
2. Operations 254
3. Method of Presentation 258
4. Linear Symbol Table Access 259
5. Sorted Symbol Table Access 265
6. Tree Symbol Table Access 273
7. Hash Symbol Table Access 282

7.1. Hash Functions 291

7.2. Secondary Store 295

8. Evaluation of Access Methods 296

W. M. Waite CODE GENERATION 302

1 1. A Model for Code Generation 304
: 1.1. The Transducer 305
f 1.2. The Simulator 306
1.3. Common Subexpressions 307

2. Sequencing and Control 309

3. Generator Data Structures 316

‘ 8.1. Value Descriptors 319
38.2. Register Descriptors 321

4. Instruction Generation 326

4.1. Primitive Operations 327

4.2. Interpretive Coding Language 329

References 332

W. M. Waite ASSEMBLY AND LINKAGE 333

1. A Model for Assembly 335

1.1. Object and Statement Procedures 335

1.2. (ross Referencing 339

1.3. Assembly under a Storage Constraint 342

1.4. Operand Expressions 343

2. Two-Pass Assembly 347

2.1. Relative Symbol Definition 347

2.2. Multiple Location Counters 352

3. Partial Assembly and Linkage 353

References 355

CHAPTER 4.: COMPILER-COMPILER

M. Griffiths INTRODUCTION TO COMPILER-COMPILERS 356
1. Motivation 356
2. Compiler—Compilersbased on Context—
Free Syntax Methods 357
2.1. Syntax 358
- 2.2. Languages for Compiler Writing 358
2.2.1. Production Language 359
2.2.2. Machine Oriented Languages 360
3. Current Research 361
3.1. Extensible Languages 362
8.2. Formal Semantics ’ 363
4. Coneclusion 363
References 364
C. H. A. Koster USING THE CDL COMPILER-COMPILER 366
0. Introduction 366
1. Affix Grammars and CDL 367
1.1. CF Grammar as a Programming Language 367
1.2. Extending CF Grammar 369
1.2.1. Affixes 369

Do Do Do Do

N R

Mok D Do Do Do
H\S.:\)O}thikt\ll\')

DO DD

D Do Do Do
BN R R DDDDMDDMNDDMDDNMDDNDDNDDND DD DN

[N

N

[S SN

LN
HN O Oy W R Y R N R R Do Do Do B R R

ChChChshl\lMNQn

[SNINVN VAN G I I GA)

G N Gy DO G Do kil O Oy Do kO MY Gu Do R N G0 O D0 R D GO Do R R Y N O Oy Y Do AN Do Y O Do Do Do Do

.

.

XI

Primitive Actions and Predicates
Actions

Repetition

Grouptng

Data Types

Affix Grammars

From Language Definition to Compiler
Description

The CDL Compiler—Compiler
Extensional Mechanisms

Realizing the CDL Machine

Some Instructions
Parametrization

Parametrization of Rules
Parametrization of System Macros
Parametrization of User Macros
Suggested Ameliorations

Data Structures and Data Access
The CDL Compiler—Compiler as a Tool
High-Level and Low=Level Version
Syntactic Debugging Aids

Efficiency of the Resulting .Compiler

Conclusion

Example: A Stmple Editor
Specification of a Simple Editor
Environment, and Arithmetic Macros
Table Administration Strategy

Input and Output Primitives

The Works

Packing more Characters into a Word
Various Target Languages

Example 2: Symbol Table Administration

The Environment

Interface with the Machine
Character Encoding

The Basic Macros

Storing Representation

The repr Table

Building a repr Table Element

370
371
372
373
374
375

375
376
376
378
378
380
380
381
381
382
383
384
385
385
387
388
389
390
391
392
394
395
398
400
402
403
403
404
404
405
405
406

Entering an Element into the repr Tabled07

Output

Input

A One Character Stock
Reading a Single Character
Recognizing Characters
Recognizing a Symbol
Reading Items

The Work Table

The Block Administration
Symbol Table

Concelusion

Example 3: Treatment of Declarations
The Language to be Recognized
Closed Clauses

Modes

Declarers

Recognizing Closed Clauses
Storing Modes

Recognizing Declarers
Conclusion

References

408
409
409
410
410
411
412
412
413
414
415
416
416
416
417
418
419
421
422
425
426

P. C. Poole

J. J. Horning

XII

CHAPTER 5.: ENGINEERING A COMPILER

V)
Do R

wW W
. e
[N S G VAR G RGN B N

~

Do Do D Do
D Do Do Do

SRR S S Y
e s e e e

(SRR Y

Do Do

[VNIEN

Do M~ kM
e e s+ & » s e =

[SCIINCING G

Do Moo

PORTABLE AND ADAPTABLE COMPILERS 427
1. Basic Concepts 427
.1. Portability and Adaptability 427
.2. Problems with Current Compilers 430
.3. Portable and Adaptable Standards 437
2. Survey of Techniques 439
.1. Portability through High Level Language
Coding , 439
.1. Bootstrapping 440
2. Language-Machine Interface 442
2. Portability through Abstract Machine
Modelling 444
1. A Standard Abstract Machine 446
2. Janus Assembly Language Formats 453
3. Some Janus Examples 458
4. Realizing the Abstract Machine by In-
terpretation 464
3. Portability through Generation 466
4. Adaptability 467
3. Case Studies 470
1. AED 470
2. LSD 471
3. BCPL 473
4. Pascal 478
1. Structure of Pascal 478
2. The Abstract Machine for Pascal 481
3. Incorporating the Abstract Machine
into the LDT 488
4. Measurements 491
5. IBM S/360 FORTRAN (G) Compiler 493
References 497
STRUCTURING COMPILER DEVELOPMENT 498
1. Goals of Compiler Development 498
1. Typical Compiler Goals 498
1. Correctness 498
2. Availability 500
3. Gemerality and Adaptability 501
4. Helpfulness - 501
5. Efficiency 502
2. The Effects of Trade-0ffs 502
1. Compilation Effictency VS. Execution ,
Efficiency 503
2. Compilation Efficiency VS. Helpfulness 503
3. Generality VS. Efficiency 503
4. Reliability VS. Complexity 504
5. Development Speed VS. Everything Else 504
2. Processes in Development 504
1. Specification 504
2. Design 505
3. Implementation 505
4. Validation 506
5. Evaluation 506
6. Maintenance 506
3. Management Tools 507

W. M. McKeeman

J. J. Horning

fo fo B0 fo N B0
DO DO kDo
c e e e o e ® s &

W W™

[$N

L
P

[N SN AN AN AN AN AN

SA}CNCNQN

N A HY N
N O HN U DO R U N G DO N R Do) Do Oy Uy RNDD DO O
B A T T T e T A A S S A T T

[S2 NG, B, TV B, B, B

XIII

1. Project Organization 507
2. Information Distribution and Validation508
3. Programmer Motivation 509
4. Technical Tools 509
1. Compiler Compilers 509
2. Standard Designs 510
3. Design Methodologies 510
4. Off-The-Shelf Compoments and Techiiques5l0
5. Structured Programming 511
6. Structured Programs 511
7. Appropriate Languages 511

References 512
PROGRAMMING LANGUAGE DESIGN 514
1. Who Should (Not?) Do It? 514
2. Design Principles 517
3. Models for Languages 519
1. The ALGOL Family as Models 520
2. Mathematics as a Model 523
3. . Street Language as a Model 524

References 524

WHAT THE COMPILER SHOULD TELL THE USER 525

Introduction 525
Normal Output 527
Headings 527
Listings 528
Summaries 530
Reaction to Errors 532
Styles of Reaction 532
Crash or Loop 532
Produce Invalid Output 532
Quit ' 532
Recover and Continue Checking 532
Repair and Continue Compilation 533
"Correct” 533
Ensuring Chosen Reactions 533
Error Sources, Detectors and Sinks 534
Syntactic Errors 535
Point of Detection 535
Recovery Techniques 535
Systematic Recovery Strategies 536
Repair Techniques 537
Other Errors 539
Lexical Errors 539
Static Semantic Errors 539
Dynamically Detected Errors 540
Limit Failures 542
Compiler Self-Checking 543
Error Diagnosis 543
Locating the Problem 544
Describing the Symptom 544
Suggesting Corrections 544
Localisation of Error Processing 545
Synthests and Placement of Messages 545
Error Logging 546
Run-Time Diagnosis 547

References 548

W. M. Waite

F. L. Bauer

A. P. Ershov

D. Gries

~

Qs

w
WO MWW MR WDNR R

w

XIV

OPTIMIZATION

Classification of Techniques
T'rans formations

Regtons

Efficacy

Local Optimization
Rearrangement of an expression
Redundant Code Elimination
Basie Blocks

Global Optimization

Redundancy and Rearrangement
Frequency and Strength Reduction
Global Analysis

References

CHAPTER 6: APPENDIX

HISTORICAL REMARKS ON COMPILER
CONSTRUCTION

Prehistorical "Gedanken—Compilers"
The First Compilers

Sequentially Working Compilers
"Syntax Controlled Compilers'
Compilers Based on Precedence
Syntax Directed Compilers
Concluding Remarks

References

N O Do
e e e e e e

Addendum

References

ERROR RECOVERY AND CORRECTION -
An Introduction to the Literature

1. Introduction

2. Recovery and/or Correction '

3. Minimum Distance Errors - Theoretical
Results

. Parsers Defined Errors

General Idea behind Error Recovery

Annotated References

[SNG NN

549

551
552
555
561
564
564
570
579
585
587
590
596
600

603

605
606
609
612
612
613
614
615

622
625

627

628
628
629

629
630
631

CHAPTER 1.A
COMPILER CONSTRUCTION

W. M. McKeeman
The University of California at
Santa Cruz
U. S. A.

"If PL/1 is the Fatal Disease,
then perhaps Algo1-68 is
Capital Punishment".

An Anonymous Compiler Writer

1. DEFINITIONS

1.1. SOURCE AND TARGET LANGUAGES

A compiler is a program, written in an implementation language, accepting text in a
source language and producing text in a target language. Language description
languages are used to define all of these 1anguéges and themselves as well. The
source language is an algorithmic language to be used by programmers. The target
language is suitable for execution by some particular computer.

If the source and target languages are reasonably simple, and well matched to each
other, the compiler can be short and easy to implement (See Section 1.A.2 of these
notes). The more complex the requirements become, the more elaborate the compiler
must be and, the more elaborate the compiler, the higher the payoff in applying the
techniques of structured programming.

1.2. IMPLEMENTATION LANGUAGES

Compilers can, and have, been written in almost every programming language, but the
use of structured programming techniques is dependent upon the implementation lang-
uage being able to express structure. There are some existing languages which were
explicitly designed for the task of compiler writing (FSL [Fe]dman 66],XPL [McKeemar
70], CDL [Koster 71b], and some for structuring (Pascal [Nirth 71], Algol 68

[van Wijngaarden 68]). The criterion for choosing an implementation language is
quite straight forward: it should minimize the implementation effort and maximize
the quality of the compiler. Lacking explicit knowledge of this kind, the compiler
writer is advised to seek a language as close as possible to the ones mentioned abo:
The number, quality and availability of such Tanguages is generally on the increase.
It may be advantageous to write a compiler to run on a different machine than the

target text will run on if better tools can thus be used (especially common for ver)
small target machines), In any case, we shall simply assume an appropriate implemer

tation language is available.

Since there are so many languages involved, and thus so many translations, we need ¢
notation to keep the interactions straight. A given translator has three main
languages (SL, TL, IL above) which are objects of the prepositions from, to and in
respectively.. A T diagram of the form

compiler name

Sl - TL

IL

gives all three [Bratman 6ﬂ . 1f the compiler in Section 1.A.2 (below) is called
Demo, then it can be described by the diagram

Demo
assignment » zero-address
statement instructions
Algol-

68

Now a compiler written in Algol1-68 is of no use unless there is also a running com-
piler for Algol-68 available. Suppose it is on the Burroughs B5500. Then if we
apply it to the T above, we will get a new T as follows:

Demo Demo

assignment zero-address | assignment zero-address
statement code statement code

Munich Compiler

Algol | Algol TR440 TR440
268 -68 ™ machine |in a line
language [language

B5500
machine
language

where the arms of the middle T must match the tails of the Ts to the left and right.
Complicated, multistage, multilanguage, multimachine translation processes can be
described by appropriate cascades of such T diagrams [McKeeman 70 pp.]6-18].

1.3 Langquage Defining Lanquages

Language defining languages are almost always based on grammars (see Chapter 2 of
these notes) but frequently have additional features designed to define the target
text (i.e., translation defining languages). Thus the distinction between language

definition and implementation language has not always been very clear. There was a
tradition at one point of time to define a programming language as "what the compiler
would translate" but this turned out to be of no value to the user who was not pre-
pared to explore the idiosyncracies of a compiler to be able to write programs. The
problem then has been to define languages without leaning on the compiler itself.

