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’ Preface

Two of the common main teachers of Jean-Marie Morvan and myself
are Professor Radu Rosca, being retired now at Paris but still very
active in mathematical research, and Professor Bang-Yen Chen, ot the
Michigan State University at East Lansing. From them we inherited a
strong interest in differential geometry, and, in particular, in sub-
manifold theory. When both of us were visiting Professor Chen once
more at MSU, at the end of 1985 and the beginning of 1986, in his
office, we discussed the organisation  of international meetings on
differential geometry. Actually, but on a rather small scale (with
about 15 participants from 5 countries), such a meeting was organised
by Jean-Marie already in 1980, at Limoges. Returning home in 1986,
Jean-Marie obtained the support of the Société Mathématique de France
and organised the meeting at Luminy (Marseille) in 1987, of which these
are the proceedings. One of our purposes with this and subsequent
meetings is to have some balanced mixture of some well established
mathematicians in our field, on the one hand, and some younger mathema-
ticians who are starting their research in differential geometry, on
the other. This mixture is not merely expressed in attending the
meeting, but we try to give also these younger people the chance to
present their results during a lecture.

I want to take benefit of this occasion to thank Professor Jean-
Marie Morvan, on behalf of all participants at Luminy, for his great
efforts to make this meeting a success. Moreover, his kind and warm
personality largely contributed to the friendly and pleasant atmosphere -
reigning at this meeting, and which is 'so important to the creation of
new contacts and the smooth exchange of information and ideas; (we don't
have to thank Jean-Marie for this, since that is just the way he is!)

Jean-Marie Morvan and I thank all participants -for their contribu-
tion to our meeting.- We thank the Société Mathématique de France for
their generous support and also for allowing us to use their beautiful
Centre International de Rencontres Mathématiques at Luminy. Finally, we
thank Professor Bang-Yen Chen for his suggestion to present the lecture
notes of this meeting to the World Scientific Publishing €o, and indeed
we thank this Company for actually accepting to publish these proceedings,
and both for the very friendly and efficient way in which this was done.

Leopold Verstraelen
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NONNEGATIVELY CURVED HYPERSURFACES
IN HYPERBOLIC SPACE

Stephanie B Alexancer Rovert J Currier
Department ol Mathematics Department of Mathematics
University of /1linois ) Smith College
1409 West Green Street, Urbana Northampton
/1linois 61807 Massachusetts 01063
S1. Introduction

This paper and [AC] concern the asymptotic behavior at infinity of complete,
noncompact, nonnegatively curved hypersurfaces properly imbedded in hyperbolic
space. These are the hypersurfaces which bound convex bodies In H*! and for
which the product of any two eigenvalues of the second fundamental form Is at
Least one. It isshown in [AC] that the asymptotic behavior of such a hypersurface
M s related to the asymptotic behavior of slowly growing subharmonic functions
on the ptane. The consequence derived there is that M Isweakly bsgmptotlc, ina
sense described below, to a nonnegatively curved rotation hypersurface. Thus we
were Led to ask for a simple characterization of the nonnegatively curved rotation
hypersur faces of hyperbolic space. Such a characterization is given in section 2,
after a brief explanation of the background from [AC]. '

Iheoreml [AC). Let M be & complete, noncompact, nonnegstively curved
hypersurrace which 16 property imbeaded in hyperbolic spsce 8nd Is not an
equidistant hypersurrace. Then M s the graph of 8 resl -valued hejght function
which is aefined on 8n entire horosphere H. The restriction of the hejght runction
toony 2- plane in H is 8 subharmonic function of polyrnomisl growth.

Bemark . The simplest examples of such nonnegatively curved
hypersurfaces are the horospheres, which are isometric to Euclidean space, and
the equidistant hypersurfaces (tubes of constant radius around geodesics), which
are isometric to the product of a standard sphere and a Line. For a horosphere,
the height function over any concentric horosphere Is constant. For an-equidistant ®
hypersurface about a geodesic B, the height function over a horosphere H

orthogonal to g is Log p + C, where p is the distance in H to the point at which g
strikes H.



There are three main points to Theorem 1. Gliven any geodesic ray g which
Lies In the convex set bounded by M, and any horosphere H orthogonal to g, itis
easy to see that M may be expressed as the graph of a continuous height function
with values in R (-o0) over a convex domain in H (where no graph points are
assigned to the value -o00). Here, height is hyperbolic distance to- M along
geodesics orthogonal to H and oriented in the direction of g. The first point is
that the height function h is subharmonic on the intersection of its domain with
any 2-plane in H. That is, when finite the restriction of h to a 2-plane satisfies
Ah20 where A Isthe Euclidean Laplacian. Note that subharmonicity is net
sufficlent for nonnegative curvature, since by the theorem nonnegative curvature
imposes growth conditions on h.

Secondly, If M is not an equidistant hypersurface then the geodesic rays
lying In the convex set bounded by M are mutually asymptotic. In other words,
the asymptotic boundary of M In the sphere at infinity consists of a single point,
st which all the horospheres H of Theorem | are centered. Our proof uses
analytic information about the nature of the set on which a subharmonic function
can take the value -oo0. Epstein has recently given an independent proof, using
conformal metrics and the uniformization theorem, that for a complete,

nonnegatively curved, proper imbedding of the plane into H3 the asymptotic
boundary Is a single point [E].

Finally, the growth runction G(p) of a subharmonic function h on the plane
Is defined by Letting G(p) be the maximum value of h on the circle of racius p
about the origin. The smallest nonconstant subharmonic functions have polyromisl
growth, that is, G(p)/ Log p hasa finite Limit as p->00. Theorem ! says that the
height function of M over any 2-plane is defined on the entire plane and has
polynomial growth. By Remark 1, it suffices to show that the corresponding slice
of M supports an equidistant surface at the asymptotic boundary point. (The
statement A syports £ at p wil slways mean that B Lies on the inwerd side
of A In aneighborhood of p.) One proof of this fact is given in section 2.

There are a number of theorems to the effect that if G(p) grows
sufficiently stowly, then h(z) Is not much smaller than G(p) for most values of
2= pe'e. For example, in the following theorem of Hayman an £- set in the plane
i3 8 countable union of disks subtending angles at the origin whose sum is finite.

Inheorem2 H. 77 » sanhplnmnspaym growth
then there isan £-set with the prapertly . for every €0 therefsa >0 such
that 0 < G(p)-h(pe’®) s € If p>C and pe’® & £-sot.



Using Hayman's theorem, the following theorem wes proved about the
agygmptotic behavior of M:

Iheorem 3 IAC). Let M bLe asin Theorem | andiet p be the angle pont at
nrntly n the asymptotic boundary of M. Then M efther ks a harosphere; or i
aymplotic to an equidistant hypersurface; or /s weakdy asymplotic to a
nomegatively curved rotation hypersurface My unieh supparts the equidistant

Rpersurfaces at p and s supparted by the horospheres at p.

Here Mg I8 the swmer rotation Iypersurface of M about the geodesic

arthogonal to H through an-arbitrary point 0 in H. The height function g(p) of
M, Is defined by maximizing the height function of M over the (n-D- spheresin

H of radius p about 0. Notice that My Is not necessarily smooth. (In this paper,

ob Jects are taken to be C°° unless otherwise identified.) By aumpiotc we
mean that the difference in the height functions is arbitrarily small off a
sufficiently Large ball in H. Weakly agymptote means that there is a subset E of
H which intersects every 2-plane through 0 In an £-set and for which the
difference In the height functions is arbitrarily small off the union of E with a
sufficientiy Large ball In H. This implies, for example, that the height functions are
asymptotic on all rays through 0, except for a rayset of measure zero.

In Euclidean space, a complete rotation hypersurrace (by which we mean 8
hypersurface invariant under the isometries that Leave a geodesic pointwise fixed)
Is nonnegatively curved precisely when Its profile curve Is convex, that is, when
the hypersurface s globally supported at every point by a cone. We seek an

- anslogous theorem for hyperbolic space. First, since a rotation hypersurface is
intrinsically a warped product of an interval with a sphere, the metric s given by
9 = d82 + [f(3)) 2w, where s is arclength on the interval and w Is the standard
sphere metric. For sucha metric, a radk sectional curvature, Kipq, I8the

curvature of a section tangent to 2s; a langentix sectional curvature, Kig,, I8
the curvature of a section tangent to a sphere. By a straightforward calculation,

Krag = - faa/ f Kean = O - fg2)/ 2.
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For rotation hypersurfaces, we have f(s) = r(s) in Euclidean spacé. and f(s) =
sinh r(s) In hyperbolic space. In both cases, r(s) represents the distance of the
point on the profile curve from the axial geodesic, and satisfies Jrg| < 1. Inthe

Euclidean case, the equivalence of nonnegative curvature and convexity is
immediate, since the tangential curvature Is always nonnegative.

In either Euclidean or hyperbolic space, define a cane to be a rotation
hypersurface for which the radial sectional curvatures vanish (equivalently, for
which the slices by totally geodesic 3-planes through the axis are flat) and
which, if incomplete, can be completed by the addition of one singular point. The
cones that are complete without the addition of a singutar point are the
horospheres orthogonal to the axis and the hypersurfaces equidistant from the
axis. In Euclidean space, these are hyperplanes and spherical cylinders. In
hyperbolic space, but not In Euclidean space, there exist maximal rotation
hypersurfaces with vanishing radial curvatures that are not cones. They can be
completed by adding a disk, but not a point, and cannot be completed to have
nonnegative radial sectional curvature (see Remark 2).

As above, in hyperbolic space the radial sectional curvatures of a rotation
hypersurface are -(sinh r)gg/ sinhr. If these vanish then sinhr(s) = As + B. For

A=9, we have equidistant hypersurfaces. The other solutions are best described
In Fermi coordinates, namely r (as above) for distance from the axis and z for
arclength along the axis, extended to be constant on the totally geodesic hyper -
surfaces orthogonal to the axis. For a profile curve of the form z = z(r),
arclengthis s = [I [coshu] [zr(u)2 + sech2ul/2 qu. Thus the solutions satisfy

(2,2 +sech?r] = A72, m
For 0<|Al<], we have
z = zy5 + A7 [T (1-A2sechZulV2 du, (2)
Since f(s) = sinh r(s) = As + B, these hypersurfaces have nonnegative tangential
curvature. In particular, A=1 gives z = zy + Log (coshr), namely, the

horospheres. If |A]>1, then z = zg + ﬂ"j'crosh-lw t1-AZsechZul/2 du. Here the

tangential curvature Is negative. These profile curves develop infinite curvature
as r approaches its infimum, coen'llﬁl‘



z A<l

Thus the hyperbolic cones are the equidistant hypersurfaces and the
surfaces given by equation (1) with 0<|A|<1, or equivalently by (2). Notice that
changing the sign of A corresponds to reflection in the totally geodesic
hypersurface z=z,.

Remark 2. A flat rotation surface in H3 with A>1 supports, at its
asymptotic boundary point, every horosphere centered at that point. By piecing
and rounding at the joins, one can also obtain nonflat examples of incomplete,
nonnegatively curved surfaces which support a horosphere at infinity. In
contrast, the only complete, nonnegatively curved, imbedded hypersurfaces of
hyperbolic space which support a horosphere at infinity are the concentric
horospheres. This is a consequence of the fact that a bounded subharmonic
function defined on the entire plane is constant.

Iheoremd. Acomplete, noncompsct rotstion hypersurrace in hyperbolic
pace Nas nonnegative curvature If nd only Iif it is globslly supported at every
point by & hyperbolic cone.

Proof: For a rotation hypersurface given in Fermi coordinatesby z = z(r),
the radial curvature Is nonnegative if and only if

(2,2 +sech?r], » 0. (3)



This follows by & smple eomputation-from the equations
Kraq = ~(6h rgg/ SN T and g, = coehr (2,2 + sectr V2.

Let M denote a complete, noncompact rotation hypersurface which is not an

equidistant hypersurface, and supppose first that M has nonnegative radial
curvature. Then z, isnot always infinite, and without Loes of generality is

positive somewhere. It is a conssquence of (3) that z,x0 for r>0, and z, and
Z,, slways have the same sign. By completeness and noncompactness, it follows
that M has the form z = 2(r), z,.>0, on a mexamal interval (0,8), whereif 8 < oo
then the remainder of M coincides with the equidistant hypersurface r = 8. Now
(3) mplies that the nequality (2,2 + sech?r] 2 1 holds everywhere because it
holdsat r = 0. Thus M Is tangent at each point to a hyperbolic cone (and so has
nonpegative tangential curvature). If z = z¢(r) Is the equation of such a cone,
then the expression (r) = (2,2 + sech?r] I8 Increasing while the same expression
in ¢, say g¢, remoins constant. Since g(rg) = gclrg). then the sign of 2z, - (z¢),
ogrees with that of r - r; and aince 2(rg) = 2¢(rg), then 2(r) - zp(r) Is
nonnegative. It follows that the hyperbolic cone supports M globally.

Conversely, suppose M Is globally supported by hyperbolic cones. Then
Z, = 0 for r>0, and it follows from noncompactness that z,. cannot take

opposite sighs on M. Therefore we may assume that M takes the form z = 2(r)
with 2,50 and r € (0,8), asdescribed above. Furthermore, the tangential

curvatures of M are nonnegative aince they coincide with thoee of cones. Local
- support by the cone 2 = 2¢(r) at r =rg Implies

Zpr(rg) 2 (2p)pr(rg) = (20)y"Yrg) (sech?rg) (tanhr).

Since (z¢), and z, agree at rg, M has nonnegative radial curvature. Since the

extreme values of curvature at a point are the radial and tangential curvatures,
this completes the proof.

Now Let M be a nonnegatively curved hypersurface as described in
Theorem 1. Note that the proof of Theorem 4 does not apply directly to the inner
rotation hypersurfaces Mg of M because they are not smooth. However, the

proof is retrievable:



Coroliary Immm{otmwrmaﬂy of M are glabally
syppoarted at every pont by hyperbelic cones. '

Proof. Suppose first that M 8 2-dimensionsl. As in Theorem 1, Mis the
graph of a subharmonic height function h defined on @ horogphere H. Mg I8 the
graph of the growth function 6(p) defined by raxdmizing h on the circles of

radius p about the point 0 In H. It isa conssquence of subharmonicity that the
growth function is nondecreasing and is convex In Log p HK, p. 66). Thus the

profie curve of Mg possseses regularity properties inheried from thoes of
convex functions. In particular, k has one-sided tangents everywhere, I8
differentiable except at countably many points at which the tangent undergoes a8
positively oriented rotation, and its tangents are centinuous from each side. Here
the orientation of the totally geodesic halfplane in which the profie curve Lies
coincides with that of Fermi coordinates (r, 2) where z increeses toward the
nwerd side uf Mg. The profiLe curve is eriented in the direction of increesing p.

We also need the fact that, since h 8 smooth, the Left and right derivatives of
Glp) at any pg coincide regpectively with the minimum and maximum values of

{ngleg €0 Ny ) = 6lpg)).

Fix apoint q on the profile curve of Mg, and assume thet the totally
geodesic halfplane in which It Lies has been chosen so that q fallson M. Now
slice a neighborhood of 3 in M by that same halfplane, and let Mg be the

smooth rotation hypersurface generated by the slice. Then M and Mg have the
same normal at q. The tangential and radial principal curvatures of Mg at q

are no Less in magnitude than the corresponding normal curvatures of M. It
follows from the Gauss equation that the curvature of Mg at q is nonnegative.

Thus at each of its points and for each of the tweo extreme positions of ks tangent
plane at that point, Mg islocally supported by 8 amooth rotation surface which

has nonnegative curvature at that point and is tangent to that plane.

In the coordinates (r, 2), the tangents to the profile curve of Mg point
strictly upward when r>0. Any point of the profile curve which has a nomvertical
one-sided tangent Lies on a nontrivial closed subssgment P whose tangems
never paes through the vertical and which therefore has the form z = z(r). By the
preceding paragraph and equation (3), at each of its points and for each of its
extreme tangents at that point, P s locally supported on its negative side by a



8

smooth curve z = zg(r) which has the same tangent and satisfies

[(ZS),,2 + ::~>ech2r)r > -€¢, where € can be taken arbitrarily small. Now suppose
that all the one-sided derivatives z, are positive on P. We apply an argument
from the previous proof to the differential inequality lzr2 + sech?r + erly20. It

follows that at each of Its points and for each of its tangents (not necessarily
extreme) at that point, P islocally supported below by a curve z = z¢(r) which

has the same tangent and satisfies *
(zo)p2 + sech?r +er = C (4)

Furthermore, this Local support property holds on intervals of uniform width
around any point. But then It is straightforward to show that lz,,2 + sech?r + er)

's nondecreasing in r on any given bounded subsegment of P, If € Is sufficiently
small. Here "nondecreasing” means that the Largest value at rj is no Larger than

the smallest value at r>rq. Therefore [z,,2 + sech?r] Is nondecreasing in r, and
in particular z(r) Isconvex.

Similarly, a subsegment P of the profile curve for which z,. Is negative is
supported above by curves of the form (4). Moreover, lz,.2 + sech?r] is

nondecreasing In r, and hence z(r) is concave. Now we have the information
necessary to carry out the argument in the second paragraph of the proof of
Theorem 4.

Inparticular, My hasthe form z = z(r), z,(+)> 0, onamaximal interval
(0,8), whereif a<oo then the remainder of M, coincides with the equidistant

hypersurface r = a. (Thisproves that M itself supports some equidistant
hypersurface at infinity, as claimed in section 1.) Furthermore, the corollary holds
if M is 2-dimensional. Suppose M Is of higher dimension. Then the corollary
follows from the fact that the height function g(p) of the inner rotation
hypersurface of M Is globally supported at each point by the height function G(p)
of the inner rotation surface of some 2-dimensional stice of M. This-completes
the proof. ’

B4
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