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Preface

Only a century has elapsed since 1873, when Marius Sophus Lie began his
research on what has evolved into one of the most fruitful and beautiful
branches of modern mathematics—the theory of Lie groups. These researches
culminated twenty years later with the publication of landmark treatises
by S. Lie and F. Engel [1-3] between 1888 and 1893, and by W. Killing
[1-4] from 1888 to 1890. Matrices and matrix groups had been introduced
by A. Cayley, Sir W. R. Hamilton, and J. J. Sylvester (1850-1859) about
twenty years before the researches of Lie and Engel began. At that time
mathematicians felt that they had finally invented something of no possible
use to natural scientists. However, Lie groups have come to play an
increasingly important role in modern physical theories. In fact, Lie groups
enter physics primarily through their finite- and infinite-dimensional matrix
representations.

Certain natural questions arise. For example, just how does it happen
that Lie groups play such a fundamental role in physics? And how are
they used?

Lie groups found their way into physics even before the development
of the quantum theory. They were useful for the description of pseudo-
Riemannian (locally) homogeneous symmetric spaces, being used in
particular in geometric theories of gravitation. But Lie groups were virtually
forced into physics by the development of the modern quantum theory in
1925-1926. In this theory, physical observables appear through their
hermitian matrix representatives, whereas processes producing transforma-
tions are described by their unitary or antiunitary matrix representations.
Operators that close under commutation belong to a finite-dimensional
Lie algebra; transformation processes described by a finite number of
continuous parameters belong to a Lie group.

The kinds of applications of Lie group theory in modern physics fall
into three distinct stages:



Vi PREFACE

1. As symmetry groups (1929-1960). Symmetry implies degeneracy. The
greater the symmetry, the greater the degeneracy. Assume that a Lie group
G with Lie algebra g commutes with a Hamiltonian ¢:

GHG ' = H<s[H,g]=0

Then by Wigner's theorem the basis vectors spanning a fixed energy
eigenspace carry a representation of G. For example, the three-dimensional
isotropic harmonic oscillator whose Hamiltonian is

K = how(ala, +ala, + ala; +3/2)

where [al, a;] = -6y
[a;. a]] =[a}.al] =0

has spherical symmetry. Therefore, »# commutes with the infinitesimal
generators L; of the rotation group SO(3):

[#,L]=0 L;~ala,—ala; (ij,k)=(1,2,3)cycl

The oscillator eigenfunctions therefore carry representations of the rotation
group SO(3).

However, the existence of an “accidental” degeneracy in this example
gives a larger degeneracy than is demanded by the obvious geometric
invariance group SO(3). This suggests that a larger group, containing SO(3)
as a subgroup, may be a more useful symmetry group for this Hamiltonian.
The group is U(3), with Lie algebra U;;:

[,#7., UU]—_—O Ul'j=a!aj
—# = hwz (a!ai + 1/2); [UU’ U"] = ULI 5" - U” 6,,‘

In fact, it is useful and even desirable from a calculational standpoint to
label the oscillator eigenfunctions with SU(3) representation labels (J. M.
Jauch and E. L. Hill [1], J. P. Elliott [1]).

2. As nonsymmetry groups (1960- ). Around 1960 physicists were
gradually forced to realize that groups that do not commute with # can
be even more useful than symmetry groups from a computational viewpoint.
As an example, it is possible to find a 16-dimensional nonsymmetry group
with generators ala;, af, a;, I

[#,ala] =0
[#, al] = +hawd]
[, a;] = —hwa;

[#,1]=0

This nonsymmetry group is contracted from the noncompact group U(3, 1).
Using this noncompact algebra, any eigenstate can be obtained from any
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other by applying a sequence of elements in the Lie algebra. In particular,
all excited states can be computed from the ground state, which, in turn,
can be computed either by algebraic or by analytic (variational) methods.
The hydrogen atom, superfluid and superconductor models, laser systems,
and charged particles in external fields are some of the problems amenable
to such treatment.

3. ?(1970- ). Strictly speaking, the third class of applications is not
yet known, although its appearance is probably around the corner. It now
seems possible that Lie group theory, together with differential geometry,
harmonic analysis, and some devious arguments, might be able to predict
some of Nature’s dimensionless numbers («, m,/m,, m,/m,, G*/hc, ...). In
retrospect, it-seems clear that the application of group theory to physical
problems represents the dividing line between kinematics and dynamics.
The group theory gives the overall structure of the spectrum; the dynamics
serves to define only the scale. We are looking forward to the day when
Lie groups can be pushed to give also the dynamics, or scale, of a physical
process. In terms of our model harmonic osciliator Hamiltonian, this means
that we hope some day to be able to derive the scaling factor Aw from
fundamental group theoretical arguments.

The work presented here has evolved from a course on Lie groups and
their physical applications which I taught several times at M.LT. and at
the University of South Florida. The course covered Lie groups and
algebras, representation theory, realizations and special functions, and
physical applications. Using the theory of Lie groups as a unifying vehicle,
many different aspects of many fields of physics can be presented in an
extremely economical way. A great number of calculations remain funda-
mentally unchanged from one field of physics to another; it is only the
interpretation of the symbols and the language used which changes. Thus
the Jahn-Teller effect and the Nilsson nucleus are but two aspects of the
same phenomenology.

During the development of the course, I realized that a relatively small
number of physicists have mastered the theory of Lie groups and are able
to use it actively as a tool in their researches. These physicists spend their
time primarily writing beautiful papers for one another. On the outside
looking in are the relatively large number of physicists who would like to
learn the material, who appreciate its power and usefulness, but who are
hampered by the lack of an adequate text. -

In this context, two established books deserve special mention and praise.
These books may profitably be consulted by readers interested in alternative
treatments of overlapping material. M. Hamermesh’s book [1] has done
yeoman service for the physics community during the last decade.
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Unfortunately, it stops short of a thorough discussion of Lie group theory.
S. Helgason’s book [1], which has been equally important in the mathematics
community, provides an excellent discussion of Lie group theory but is
unfortunately beyond the grasp of most working physicists.

The purpose of this book is to bridge the gap between those who do
not know Lie group theory and those who do know. In this sense, this
work “fits between” the books of Hamermesh and Helgason.

1t has been my intention throughout to present the material in such a
way that it is accessible to physicists. I have tried to be as rigorous as
possible. But when rigor and clarity have clashed, clarity has won out.
There are a sufficient number of treatises on Lie groups by and for mathe-
maticians, and the reader interested in complete rigor will have no trouble
filling the gaps I have left.

This work has been aimed at the level of the graduate student. Problems
of an illustrative nature have been worked out and included throughout
the text. For a physicist it is not only desirable to understand the material,
but necessary to be able to make calculations. It is hoped that the solved
problems will lead more swiftly to this facility. Exercises have been included
at the end of each chapter. Many of them are designed to bring on an
awareness of how and where the mathematics presented finds its way into
physics. Numerous figures—perhaps too many—have been included, in an
attempt to foster easier understanding of the arguments presented in the
text. This vice dates from many encounters with Professor I. M. Singer,
who always managed to. make an argument clearer with one or two telling
sketches. The references within each chapter (superscript numbers) refer to
the Notes and References section_at the end of that chapter. The references
in the closing section of each chapter refer to entries in the master
bibliography at the end of the book.

The structure of this book resembles that of a concerto. The study
develops (allegro) in Chapters 1 to 4, where the general properties of Lie
groups and algebras are discussed. It continues and concludes (more allegro)
in Chapters 7 to 10, which are principally devoted to the properties of
the semisimple Lie groups. Chapters 5 and 6 provide a relief (moderato)
from the development. In these chapters specific examples are used both to
illustrate concepts developed earlier and to presage concepts to be dealt
with subsequéntly.

Chapter I, which is devoted to fundamental working definitions and
notations, has been included to make the book as self-contained as possible.
A cursory familiarity with modern algebra will allow the reader to bypass
this chapter. I have tried to present here some of the basic concepts of
modern mathematics in such a way that they are less mysterious to a
student of physics.
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Chapter 2 describes examples of Lie groups. In particular, the classical
Lie groups are described following, to some extent, the treatment given by
F. D. Murnaghan [1, 2]. This is a not altogether satisfying approach, and
we return to the problem of enumerating all the real forms of the simple
classical Lie algebras in Chapter 6, where a complete and elegant summary
is presented.

In Chapter 3 we define, describe, and work with continuous groups and
some of their properties. This treatment culminates in a definition of a Lie
group, described more thoroughly in Chapter 4. In this chapter we display
the relationship between Lie groups and Lie algebras; we also prove the
three theorems of Lie. These theorems relate a Lie algebra to a Lie group
by the linearization process. The converses to these three theorems—stated
but not proved—relate Lie groups to Lie algebras by the inverse process,
exponentiation.

Chapters 5 and 6 represent a watershed in our formal discussion of Lie
groups and their algebras. Chapter S5, an elaboration of the concepts
developed in the preceding chapters, takes the form of applications of the
formal machinery to some of the classical groups—chiefly SU(2). We indi-
cate here also how this machinery can be applied to some useful physical
problems. In Chapter 6 we describe more thoroughly the simple classical
matrix groups and their algebras. The focal point of this chapter is the
summary of all the real forms of the simple classical Lie algebras, and
the coset spaces related to these real forms.

In Chapter 7 we resume our formal study of Lie groups and their algebras.
All the major tools used in the classification theory of Lie algebras are
trotted out one by one, dusted off, and applied to this classification problem.
At the end of this chapter we present the commutation relations for all
the classical complex simple Lie algebras in canonical form, using the
concept of a root space diagram.

The canonical commutation relations are presented again at the beginning
of Chapter 8 and are used in making a complete classification of all the
root space diagrams. The completeness classification of B. L.  van der
Waerden [3] is used to construct the complete set ofgroots in any root
space. E. B. Dynkin’s approach [1], using Coxeter-Dynkin diagrams, then
serves to furnish a convincing proof of the completeness of the classification.

Ounce all the root space diagrams have been classified, there remains
only the problem of classifying the real forms which the complex simple
algebras can have. This problem is treated in Chapter 9. The approach in
itself leads to nothing surprising: all such real forms have already been
encountered, using different arguments, in Chapter 6. This approach merely
shows the completeness of the list in Chapter 6. The classification. of the
real forms used here involves a listing of the irreducible Riemannian
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symmetric spaces, which are cosets of a simple Lie group by a maximal
compact subgroup. These spaces are interesting objects in their own right,
and are of course intimately related to Lie groups. Moreover, the concepts
and methods developed in Chapters 7 and 8 are applicable to the study
of the irreducible Riemannian symmetric spaces. Application of these
methods leads immediately to a complete listing of all the globally symmetric
pseudo-Riemannian symmetric spaces.

The closing chapter is devoted to a study of how Lie groups and their
algebras can be altered. We begin by studying the process of contraction,
in which nonsemisimple Lie groups can be constructed from semisimple
Lie groups by a limiting procedure. Chapter 10 closes with an indication of
how the reverse process can take place; this is called group expansion.

Some terms appearing in this work are used in an unusual way. For
example, the term “basis” is usually applied to an element in a linear
vector space (basis vector); however, since I apply this term to analogous
elements in a group, field, and algebra, the shortened term “basis” is
much more appropriate. Such usage is designed to aid the understanding
of the neophyte. In addition, I have not always used the same matrix
structure to describe various Lie algebras, since I feel it is more useful to
have several alternative descriptions of an algebra than one canonical one.
I hope the cognoscenti will understand and appreciate these usages.

The physicists will be unhappy that so many important topics have been
omitted. This work contains no systematic discussion of the representation

theory of Lie groups and Lie algebras. Those interested in such material =~

are urged to consult the books of H. Weyl [1, 2] and the works of
E. Cartan [1, 24, 27, 28], the two classical giants in this field. Nor is there
any systematic discussion of the theory of the special functions of mathe-
matical physics. This material is treated in the books of N. Ja. Vilenkin [1],
W. Miller [2], and J. D. Talman [1].

Finally, there is no systematic discussion of the applications of Lie group
theory in modern physics. Such a systematic treatment, which would fill a
volume in itself, could only be carried out after a treatment of the
representation theory of Lie groups. In lieu of such treatment, numerous
exercises indicating physical applications have been included at the end of
each chapter. In addition, a number of physics papers dealing with every
sort of application of Lie groups in physics have been placed in the
bibliography. The interested reader has only to pick out some interesting-
sounding titles from the bibliography and to follow them into the current
literature. He is sure to be surrounded by Lie groups and unbelieveable
applications in no time at all.
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For the sins of omission and commission I am deeply sorry. I hope the
former are somewhat compensated for by references in the bibliography.
The latter I hope are few and far between.

I would like to thank my former students at M.L.T. and the students
and faculty at U.S.F. for their many useful comments and suggestions.
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gratitude is due to the programming policies of WCRB, which made the
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