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Preface

I have been using the first edition of this book as a text for a number of
years. This was in a Stanford University first-year graduate course that
is taken by students from Electrical Engineering or Computer Science
who are interested in computer organization. Because computer tech-
nology has been changing so rapidly, it became necessary to supplement
the text with additional readings. My colleagues and I examined many
newly-published books for possible use as texts. We found no book with
the same excellent choice of topics and thorough coverage as Dr.
Gschwind’s first edition.

Springer-Verlag’s request that I prepare a second edition of this book
came at a time when I had many other projects underway. Before I de-
cided whether to take on the project of preparing a revision, I asked
many of my students for their opinions of Dr. Gschwind’s first edition.
Even I was surprised by the enthusiasm that this rather skeptical and
critical group of students displayed for the book. It was this enthusiasm
that convinced me of the value and importance of preparing the revision.

Most of the changes and additions that I have made are concerned
with the primary role played by the integrated circuit in contemporary
computers and other digital systems. Thus Chapter 4 has been entirely
rewritten. It now presents a comprehensive discussion of the various
technologies used to implement digital integrated circuits. Every attempt
was made in developing this presentation not to require a background in
electrie-circuit theory. This chapter has been taught successfully to com-
puter science students with no electrical engineering or physics back-
ground. This is possible not because of an avoidance of the important cir-
cuit phenomena but by carefully developing mathematical models for the
integrated circuit diode and transistors. These models incorporate those
parameters which are significant in explaining the performance of the
digital circuits. I believe that it has thus been possible to have a presenta-
tion which while accessible to the computer scientist is still complete
enough for the electrical engineer.

When preparing the material on flip-flops, I discovered that there was
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vi Preface

a great deal of confusion about the essential difference between edge-
triggered and master-slave flip-flops. The discussions of these flip-flops in
the manufacturers’ literature, in books and periodicals were all somewhat
confused. I believe that after many discussions with friends in integrated
circuit companies as well as colleagues in computer engineering I have
been able to present in Chapter 5 a succinet summary of the essential
features of integrated circuit flip-flops.

The material on counter circuits in Chapter 6 has been entirely re-
written to bring it up to date with contemporary integrated circuit tech-
niques. Chapter 8 has a major section on integrated circuit memories
added. Also the material on microprogrammed control units has been in-
corporated into Chapter 8 and combined with the discussion of other tech-
niques of designing control units.

The new material included in this revision has been used in classes
both at Stanford University and the University of Illinois. I have bene-
fited from helpful comments from students on this material.

Many people have helped in the preparation of this manuscript. Mrs.
Susan Jordan did much of the typing and also did a beautiful job of draw-
ing most of the figures. The early typing was done by Mrs. Patricia
Fleming. Copy editing, emergency typing, reference citation preparation,
and proofreading were done by Mrs. Sally Burns, now Mrs. Sally
MecCluskey.

Many of my students and former students commented on the manu-
script and helped with proofreading. John Wakerly, Kenneth Parker,
John Shedletsky and Rodolfo Betancourt all helped with the reading of
the galley proofs.

February 1975 Epwarp J. McCLUSKEY



Design of Digital Computers



Contents

Introduction

Number Systems and Number Representations

2.1
2.2

23
2.4
25

Counting in Unconventional Number Systems
Arithmetic Operations in Unconventional
Number Systems

Conversions

Number Representations

The Residue Number System

Boolean Algebra

3.1
3.2
3.3
3.4
3.5
3.6

Binary Variables

Functions of One Variable

Functions of Two Variables
Functions of Three or More Variables
Minimization

Graphic Symbols for Logic Gates

Integrated Circuit Gates

4.1
4.2
43
44
4.5

Ideal Diodes
Semiconductor Diodes
Bipolar Transistors
Bipolar Logic Families
MOS Transistors

Storage Elements

5.1
52
5.3

Flip-Flops
Magnetic Storage
Dynamic Storage Elements

vii

14
20

24

25
26
27
31
36
42

47

47
53
56
64
100

122

124
141
148



viii

10.

Contents

Computer Circuits

6.1 Registers
6.2 Counters
6.3 Adders

The Basic Organization of Digital Computers

7.1 Design Philosophy

7.2 The Basic Internal Functions of an Automatic
Digital Computer

73 The Layout of Early Computers

7.4 The Concept of the Stored Program Computer

7.5 A Model Layout of a Digital Computer

The Functional Units of a Digital Computer

8.1 The Arithmetic Unit

8.2 The Control Unit

8.3 The Memory

84 The Input/Output Unit

8.5 Communications in Digital Computer Systems

Unorthodox Concepts

9.1 Polymorphic Computer Systems

9.2 Arithmetic Units with Problem-Dependent
Interconnections

9.3 Hybrid Computation

9.4 Digital Differential Analyzers

9.5 Machines with Cellular Organization

9.6 List Processors and List Processing Features

9.7 Associative Computers

9.8 Learning Structures, Adaptive and Self-
Organizing Systems

Miscellaneous Engineering and Design Considerations

10.1 Capability versus Cost

10.2 Speed versus Cost

10.3 Error Detection and Correction Techniques
10.4 Computer Evaluations

155

155
168
191

212
212

216
219
223
227

233

233
333
382
416
432

455
455

457
458
463
467
482
493

498

515

516
518
522
532



1. Introduction

“Computers” have attracted general interest only rather recently al-
though computing devices have been known for a long time. The Antiky-
thera mechanism, supposedly used by ancient Greeks to determine the
motions of the stars and planets [1], the astrolabes of the middle ages
[2], and Pascal’s calculator [3], are only a few examples of early compu-
tational devices. However, the present usage of the term “computer” in-
cludes neither those relatively primitive (though certainly effective) aids
for computation, nor later developments like the slide rule, the planime-
ter, or the desk calculator. What we mean nowadays by a computer is
a machine which performs a computation automatically and without
human intervention, once it is set up for a specific problem. If we want
to emphasize this distinetion, we speak of automatic computers as op-
posed to caleulators or computing devices.

The present use of the term “computer” has a second connotation.
It usually refers to an electronic device, although there have been (and
still are) automatic computers which operate mechanically or electro-
mechanically. There are mainly two reasons for this close association
between electronies and modern computers: no known principle other
than electronics allows a machine to attain the speeds of which modern
computers are capable; and no other principle permits a design of com-
parable convenience.

Even though practically all modern computers operate electronically,
there are several distinet types of machines. Here, we do not mean differ-
ences concerning circuit elements such as tubes or transistors, but basic
differences in the design philosophy. The most characteristic distinction
is probably the analog or digital nature of a computer.

An analog computer represents the values which it uses in its calcula-
tion by physical quantities. The slide rule, which is an analog device (al-
though, of course, no computer according to our definition), uses the physi-
cal quantity “length” to represent computational values. An electronic
analog computer uses voltages as convenient analog quantities (higher
voltages for larger values, lower voltages for smaller values, etc.) In con-
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2 1. Introduction

trast, a digital computer employs numbers, as we usually do in paper and
pencil calculations. Numerical values are represented by the presence or
absence of electric potentials or pulses on certain lines. The magnitude of
these potentials or pulses is of no particular significance, as long as it is
adequate for the fault-free operation of the computer. Of course, both
basic representations have their merits and their disadvantages.

Analog Computers are of relatively uncomplicated design. It is quite
feasible to build small and inexpensive machines. Moreover, problems
put on an analog computer usually are simulated by an electronic net-
work of resistors, capacitors, amplifiers, etc., which has an intelligible
relationship to the problem to be solved [4]. On the other hand, the elec-
tronic model usually comes only to within about 1% or .1% of a true
representation of the actual problem. Even though this inherent error
is of no importance for many problems, there are calculations in which
it cannot be tolerated. Furthermore, there are several types of problems
which, due to the nature of its design, cannot be solved by an analog
computer?!.

Digital Computers are relatively complex machines. In many in-
stances, it is difficult for an expert to recognize from the program alone
even the type of problem to be solved. However, digital computers have
the great advantage that they can solve practically all problems which
can be stated in mathematical language. Their accuracy is not limited
by the operating principle, but only by practical considerations. Further-
more, they can be employed to translate their own internal language into
very concise and intelligible statements or, conversely, interpret instruc-
tions given in almost everyday language for their own use.

In addition to analog and digital computers, there are a few computer
types which attempt to combine the advantages of both principles. The
Digital Differential Analyzer, similar to an analog computer, represents
problems by a network of units (the integrators) but, like a digital com-
puter, uses numbers to represent computational values [5]. In Hybrid
Computers, analog computations are combined with digital computations
[6].

Of these four types of computers, only the digital computer will be
considered here? The topics may be roughly divided into four categories.

*For instance, inventory control, bookkeeping, playing of mathematical
games, or, perhaps, finding all prime numbers between 0 and 10°.

*It is, however, worthwhile to note that some of the indicated basic design
techniques may be applied to any digital equipment, including that of digital
differential analyzers and hybrid computers, and that the organization of these
latter two types of computers is at least sketched in order to provide a reference
against which the organization of digital computers may be viewed.



1. Introduction 3

Chapters 2 and 3 contain fundamental information on number systems
and Boolean algebra. The detail included provides more than a prere-
quisite for the understanding of the then following material. Chapters
3,4, 5, and 6 are concerned with individual components and circuits which
constitute the computer hardware. Chapters 7, 8, and 9 are devoted to
the organization of computers. Chapter 10 contains miscellaneous topics
not included elsewhere.

Problem 1 (Voluntary): You are provided a desk calculator and an
operator for it. The operator can execute only simple instructions such
as “add the value in column 7 to the value in column 5” or “copy down
result in column 9”. Try to devise a set of instructions and a worksheet
for the operator so that he can calculate the value of sin x for any given
2 by the approximation:

a8 z®

smxzx—g-l-fz—o
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2. Number Systems and Number
Representations

The familiar decimal system is by no means the only possible number
system. Considered impartially, it merely constitutes one among possible
and practical systems which became propagated, probably for the sole
reason that human beings happen to have ten fingers. The Mayas used
the vigesimal number system (based upon 20, i.e. fingers and toes) [1]
and even in our day, there are some endeavors to introduce the duodeci-
mal system (based on 12) for general use [2]. Since computers are not
bound by tradition and since the decimal system has no unique merits,
the designer of a computer is free to select that number system which
suits his purpose best.

2.1 Counting in Unconventional Number Systems

Before we set out on unfamiliar ground, let us shortly review the
decimal number system. Any decimal number is made up of the ten sym-
bols: 0, 1,2, . . . 9. When we count, we use these symbols consecutively:
0,1,2, . .. 9. Then, if we have exhausted all available symbols, we place
the symbol 1 in a new position and repeat the cycle in the old position:
10, 11, . . . 19. If we run out of symbols again, we increase the digit
in the second position and repeat the cycle in the first position: 20,
21, . .. 29, etc. If we have no more symbols for the second position,
we create a third position: 100, 101, and so on.

Counting in a different number system follows the same procedure.
Let us count in the ternary system (base 3). We have only three symbols:
0, 1, and 2. We proceed as follows: 0, 1, 2. Then having no other symbols
for this position, we continue: 10, 11, 12. Running out of symbols again,
we write: 20, 21, 22. Having no more symbols for the second position,
we create a third position: 100, 101, 102, 110, 111, 112, 120, 121, 122,
200, 201 and so on.

Problem 1: Count in the binary system (base 2) and in the duodeci-
mal system (base 12) up to the equivalent of the decimal number 25.
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2.2. Arithmetic Operations in Unconventional Number Systems 5

Use the letters T and E as symbols for ten and eleven in the duodecimal
system.

Problem 2: Try to state some advantages and disadvantages which
the duodecimal system might have over the decimal system for computers
and for everyday calculations.

2.2. Arithmetic Operations in Unconventional Number Systems

We can perform calculations in other number systems equally well
as in the decimal system, once we are familiar with a few simple rules.
For arithmetic operations in the decimal system, we (mentally) use the
addition and multiplication tables reproduced below.

Table 2.1. Decimal Addition Table

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

Table 2.2, Decimal Multiplication Table

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 10 12 14 16 18
3 0 3 6 . 9 12 15 18 21 24 27
4 0 4 8 12 16 20 24 28 32 36
5 0 5 10 15 20 25 30 35 40 45
6 0 6 12 18 24 30 36 42 48 54
7 0 7 14 21 28 35 42 49 56 63
8 0 8 16 24 32 40 48 56 64 72
9 0 9 18 27 36 45 54 63 72 81




6 2. Number Systems and Number Representations

Table 2.3. Ternary Addition and Multiplication Tables

+ 0 1 2 X 0 1 2
0 0 1 2 0 0 0 0
1 1 2 10 1 0 a1 2
2 2 10 11 2 0 2 11

Let us construct corresponding tables for, let us say, the ternary sys-
tem. Having only three symbols, we will obtain nine entries. Instead of
the decimal symbols for three and four, we will show their ternary
equivalents 10 and 11. (See Table 2.3).

We can use these tables for ealculations in the ternary system in the
same manner as we use the decimal tables for computations in the deci-
mal system. Suppose we want to add the two ternary numbers 1021220
and 210121. The computation is given below:

— -

1
1 2
+ 0 2
2 1

- O

2

ol o
Ol = o
ey e ]

The carries to be brought forward are indicated in the top line. Similarly,
for the product of the two ternary numbers 1120 and 12, we obtain:

11 2 0

X 1 2

10 010
1120

21 210

The simplest addition and multiplication tables are obtained for the
binary system:

Table 2.4. Binary Addition and Mulliplication Tables

+ 0 1 X 0 1
0 1 0 0 0
1 1 10 1 0 1

The simplicity of these tables is perhaps one of the reasons why the
binary number system is so attractive to computer designers.
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From now on, we will indicate the base of a number by an appropriate
index if the base is not apparent from the context. For instance, a number
like 453, shall indicate an octal number (base 8).

Problem 3: Construct the addition and multiplication tables for the
quinary (base 5) and octal (base 8) number systems. Be sure to make
all entries in the appropriate number system.

Problem 4: Construct the addition tables for the duodecimal (base
12) and the hexadecimal (base 16) systems. Use the letters 7' and E
as symbols for ten and eleven in the duodecimal system and the letters
A, B, C, D, E, F as symbols for numbers from ten to fifteen for the
hexadecimal system.

Problem 5: Perform the following arithmetic operations:

a) 10111, 1101,

b) 11010, — 10110,

c) 101101, x 1011,

d) 11011, =11,

e) 2431, 1 132,

f) 324; X 14,

g) 6327, + 45305

h) 124, — 76,

) 12565 X 27,

Check your computations by converting these problems and their re-
sults to the decimal system after you have studied paragraph 2.3.

2.3. Conversions

As long as there is more than one number system in use, it will be
necessary to convert numbers from one system to another. Such a conver-
sion is required if we want to insert decimal numbers into a binary com-
puter, or vice versa, if we want to interpret results computed by such
a machine. If we are to do this conversion ourselves, we prefer to perform
the required arithmetic in the familiar decimal system. If the computer
performs the conversion, an algorithm in its number system is preferable.

Each position in a decimal number like 2536 has a certain weight
associated with it. The digit 2 in the above number represents, for exam-
ple, two thousand or its position has the weight 103. Writing the number
2536 in longhand, we have:

253610 = 2 X 10 4+ 5 X 102 + 3 X 10! + 6 X 10°
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An arbitrary decimal number has the form:

Nig= - ds X10® 4+ d; X 102 + d; X 10 + dy X 10°
+d_y X107 4 - - - (2.1)

A number written in a system other than decimal has the same general
structure; only the weights will be different. For an arbitrary number
written in the octal system, we obtain for instance:

Ng= - "-Cs X8 4+Cy X8+4+Cy X8 +Cy X8
+C i X814+ C o X824 -+ (2.2

The coefficients C,, are octal integers ranging from 0s to 7.

Conversion formulae derive the coefficients in one number system (e.g.
Equation 2.1) from the coefficients of another number system (e.g. Equa-
tion 2.2). Since the procedures are different for different conversions, we
will consider one case at a time.

2.3.1. Conversion of Integers

Let us start with a specific example. Suppose we want to convert the
number 3964, to the octal system. This number is an integer in the deci-
mal system and consequently also an integer in the octal system. (We
can derive it by counting “units”.) According to Equation (2.2) we can
write in general terms:

396410 = -+ - C3 X8 4+ C2 X84 C1 X8 4+ Cy X8 (23)

All C’s are positive integers smaller than 8, but not yet determined.
Suppose we split the right-hand side of Equation (2.3) into two parts:

3964:1():(03X82+02X81+01)XS+00 (24)

The first term, apparently, is part of our original number which is
divisible by 8 (the integral part of the quotient 3964, = 8), whereas
the term C, is that part of the original number which is not divisible by
8 (the remainder of the quotient 3964, =— 8).

If we divide 3964,, by 8, we obtain:

39645 ~ 8 = 495 4+ 4/8
We can therefore write:
3964, = 495 X 8 + 4 (2.5)
Comparing (2.4) and (2.5), we find Cy = 4, or we can write
396410 = 49510 X 8 + 45 X 8° (2.6)



