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Foreword

The progress of mathematics can be viewed as a movement from the infinite to
the finite. At the start, the possibilities of a theory, for example, the theory of
enumeration, appear to be boundless. Rules for the enumeration of sets subject
to various conditions, or combinatorial objects as they are often called, appear
to obey an indefinite variety of recursions, and seem to lead to a welter of
generating functions. We are at first led to suspect that the class of objects with
a common property that may be enumerated is indeed infinite and unclassifia-
ble.

As cases file upon cases, however, patterns begin to emerge. Freakish
instances are quietly discarded; impossible problems are recognized as such,
and what is left organizes itself along a few general criteria.

We would like these criteria to eventually boil down to one, but by and
large we must be content with a small finite number.

And so with the theory of enumeration, as Jackson and Goulden show in
this book. There are two basic patterns, ordinary generating functions and
exponential generating functions, the first counting unlabeled or linearly
ordered objects, the second counting labeled objects. The various combina-
torial interpretations of the Lagrange inversion formula give the deepest results
in enumeration. The test case is the enumeration of permutations subject to
various geometric conditions. The still largely mysterious g-analogs arise from
adding an extra parameter to the enumeration of permutations.

Lastly, there is the connection between circular enumeration and exponen-
tial generating functions; this, as well as the other topics, is developed
thoroughly and with a wealth of examples by Goulden and Jackson. Their
book will be required reading from now on by any worker in combinatorics.

Gian-Carlo Rota
Cambridge, Massachusetts
April 1983
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Preface

The theory of enumeration has developed rapidly during the past century, with
the increasing awareness of the importance of discrete structures. Work on its
mathematical foundations has been inspired by MacMahon’s “Combinatory
Analysis,” published in 1915, and Rota’s series entitled “On the Foundations
of Combinatorial Theory,” begun in 1964. Our objectives in writing this book
are to give a unified account of a generating function approach to this area and
to give a reasonably complete collection of representative results. We have
illustrated the theory with a range of examples to reveal something of its
generality and subtlety. The book is written not only for the combinatorial
theorist but also for the mathematician, the physicist, and the computer
scientist, in whose fields problems of this type occur. Hitherto, much of the
material included here has been available only in the research journals.

The general principle behind our account is a very simple one. First,
combinatorial arguments are used to derive bijections (decompositions) be-
tween sets of discrete structures, and these are then reduced to functional
relationships between formal power series by associating generating functions
with sets. The type of the generating function (whether ordinary (Chapter 2) or
exponential (Chapter 3)) depends on the decomposition. In manipulating
generating functions, we appeal to results from analysis and linear algebra that
are developed from the ring of formal power series and Laurent series in
Chapter 1.

Among the structures considered are permutations, sequences, integer parti-
tions, trees, maps, plane partitions, and lattice paths. The examples following
each decomposition have been selected to illustrate the variety of the enumera-
tive results that can be obtained from a single decomposition. Many of these
can be derived separately, and more quickly, by methods peculiar to the
particular problem. However, such methods may be hard to discover without
knowing the results in advance and tend to give less insight into the relation-
ships between problems.

The exercises are organized as a compendium of supplementary results
whose solutions are given in detail to encourage readers to probe further. They
contain additional decompositions, further development and generalization of
the ideas presented in the text, and a gradual evolution of the technical details,
both combinatorial and algebraic.



Preface

We have not attempted to give a complete bibliography of the field; instead.,
we have confined ourselves to references that either relate closely to specific
points in the material or that are more detailed accounts of particular topics.
In the interest of brevity, these two types of references are not distinguished in
the notes and references following each section.

Inevitably, it has been necessary to exclude a number of important enumer-
ative areas. The main exclusions are incidence algebras, ring-theoretic methods,
theory of chromatic polynomials, asymptotics, root systems, and graphical
enumeration, each of which warrants separate treatment.

We have benefited both directly and indirectly from conversations with
friends and colleagues. In particular we wish to thank D. Z. Djokovic,
P. Flajolet, I. M. Gessel, M. Guy, J. Lawrence, A. Mandel, R. P. Stanley, and
N. Wormald. One of us (D.M.J.) would like to express a debt of gratitude to
the late Dr. J. C. P. Miller for his encouragement of this project, and the
Department of Pure Mathematics and Mathematical Statistics (University of
Cambridge), the Computer Laboratory (University of Cambridge), and the
Institute National de Recherche en Informatique et en Automatique (Paris),
for their hospitality during several summers of uninterrupted work. Finally, we
are grateful to Mrs. Susan Embro and Mrs. Sandy Tamowski for so skillfully
executing the long and, at times, trying task of typing our manuscript and to
H. D. L. Night for preparing the illustrations.

1. P. GOULDEN
D. M. JACKSON

Waterloo, Ontario
April 1983



Notation

For graph-theoretic definitions see Bondy and Murty (1976). In general, sans
serif capitals denote sets and boldface letters denote matrices or vectors. In the
text [a.b.c.] denotes exercise ¢ in section b of chapter a, and a.b.c. denotes
paragraph c in section b of chapter a.

M, ,(R)
M, (R)
LA

)

ij
—>
X
i!

i

f oy (umbral)

[bij]an
i1l m
cof, ;A
diag(x)
B[a|B]

(051525505 )
{1,2,...)
(1,..., n)

cardinality of the set S
free monoid on S
S* — (&), where ¢ is the empty string
the set of rationals
the set of all integers
the set of all m X n matrices with elements in R
M n, R(R)
integer part of A
1 ifi=j

Kronecker delta: §,, = ig . ’

J 0 ifi=y
elementwise action of a mapping
xixh... x'n where X = (x,..., x,), i = (i},..., i)
it

multinomial coefficient m!/i! where i|, + --- + i, =m

n

Y fiviwheref=1+fix+ f,x*+--- andy =
k>0
(Yos Y15 Y25 -+ )
the m X n matrix whose (i, j)-element is b,
determinant of the m X m matrix whose (i, j)-element is a,;
cofactor of the (i, j)-element of A
the diagonal matrix with x, in row /
the submatrix of B with row and column labels in « € N,
B € N, respectively.

n>

XXiii



Notation

B[N,, — alN, — B]
the matrix obtained by replacing column / of B by the column
vector b, where b has m elements

the adjoint of A € M (R)
[T k! whereK=[k, ]JmXxn

l<ism
l<j<n
[T afy where A = [a,,]m X n
I<i<m i
I<j<n

(1,
J

n,n
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