OPERATING AND PROGRAMMING SYSTEMS SERIES

Al
Laboratory Manual
for

Compilerand
Operating System
Implementation

Maurice H. Halstead

a N\
A

Laboratory Manual
for

Compilerand
Operating System
Implementation

Maurice H. Halstead

\\ Computer Science Department, Purdue University,

_/

NORTH HOLLAND-NEW YORK

=%%| NEW YORK » OXFORD
Leg

Elsevier North Holland, Inc.
52 Vanderbilt Avenue, New York, N.Y. 10017

Distributors outside the Urited States and Canada:

Thomond Books

(A Division of Elsevier North Holland Scientific Publishers, Ltd.)
P.O. Box 85

Limerick, Ireland

International Standard Book Number 0-444-00142-5
Library of Congress Card Number 73-10897

© Elsevier North Holland, Inc., 1974
Third Printing, 1978

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without permission in writing from the publisher Elsevier North
Holland, Inc., 52 Vanderbilt Avenue, New York, N.Y. 10017.

Library of Congress Cataloging in Publication Data

Halstead, Maurice Howard, 1918-
A laboratory manual for compiler and operating system implementation.

(Operating and programming systems series)
Includes bibliographies.
1. Compiling (Electronic computers) 1. Title.
QA76.6.H32 001.6’425 73-10897
ISBN 0-444-00142-5

Manufactured in the United States of America

4 A\

Laboratory Manud
for

Compilerand
Operating System
Implementation

\— S

THE COMPUTER SCIENCE LIBRARY

Operating and Programming Systems Series
Peter J. Denning, Editor

Halstead A Laboratory Manual for Compiler
and Operating System Implementation

Spirn Program Behavior: Models and Measurements
Halstead Elements of Software Science

Franta The Process View of Simulation

To Sylvia

Prologue

In studying or teaching fundamental concepts involved in both compilers and
operating systems, it may be advantageous to have available a compact example
of each, to serve as a source of laboratory experiments or semester projects to
supplement material covered by the range of available texts in the field.

The first part of this manual provides the material required by a student to
enable him to write a specific, minimal self-compiler; to check it out; to extend
the source language which it accepts; and to improve the object code which it
produces. The second part provides comparable material for the implementation
of a skeletal time-slicing operating system. The student will also need, in
addition to talent and industry, access to any computer larger than a desk
calculator and other than a Univac 1108. The latter restriction arises because the
examples of both the compiler and operating system given are instances of
implementations for that computer, hence little would be learned by reinstalling
them on that particular machine.

The objectives are threefold: (1) to give the student personal familiarity with
the more detailed and specific problems which must be solved for any compiler
or for any operating system, including that class of problems which appear too
trivial to warrant attention in a scientific paper, or even a text, but which
nevertheless must be mastered by the implementor himself; (2) to provide a
background which will allow more ready assimilation of a text, and of even more
advanced papers which will appear in the future; and (3) to provide the student
with a frame of reference which should assist him in understanding the multi-
tude of newly discovered or rediscovered techniques in the field of computer
software.

Pilot Properties

Although the history of the Pilot language can actually be traced back
through the Lockheed Missiles & Space Company to the Navy Electronics
Laboratory, one might nevertheless coin the acronym, Purdue Instructional

xi

xii COMPILER AND OPERATING SYSTEM IMPLEMENTATION

Language for Operating systems and Translators. Pilot itself has more than a
dozen properties which contribute to its usefulness in the present context, each
worth a sentence or two by way of explanation.

Efficiency. Pilot is an inherently efficient language, since virtually all of its
features have been designed with both ease of compilation and speed of object
code in mind. Many student implementors have produced compilers which
would compile the complete compiler from source to target language in S
seconds on a CDC 6500.

One pass. Since the Pilot compiler is based upon the one-pass principle, it
must therefore illustrate a solution of the forward reference problem for those
cases in which jumps to as yet uncompiled labels are encountered.

Reentrant. Both the compiler itself is reentrant (or pure procedure), as well
as the code which it generates. This feature may be readily omitted, however, if
it is not required.

Portable. The language has been implemented hundreds of times, on most of
the large computers and many of the smaller ones, such as the IBM 1130 and
IBM 1620.

Systems-orientation. The language includes notation for reaching core di-
rectly, both for fetches and stores, and for transfers. Both octal and hexadecimal
numbers are handled. It also allows the insertion of one or more machine-
language instructions after any statement. With these capabilities, it is clearly
close enough to any machine on which it is implemented to assure the ability to
produce efficient code. While it does not otherwise provide for bit handling,
such a feature has frequently been added by a student implementor.

Simple language. The language itself has been reduced to a very basic
simplicity, while retaining only those capabilities required to write, for example,
a complete compiler. It includes neither floating point, literals, nor parenthetical
grouping of expressions, and all variables are global. From the point of view of
the user of the language, some of these restrictions may appear irksome, at
which point it is well to remember that the user is intended to be the imple-
mentor as well, and that the restrictions have been introduced for the sole
purpose of easing the task of understanding the implementation. As evidence of
this simplicity, one may note that the Backus Normal Form specification of
Pilot requires fewer than 30 definitions, of which five are devoted to the
differences between octal, decimal, and hexadecimal numbers.

Minimal size. The Pilot compiler consists of approximately 250 source
statements, an order of magnitude fewer than the compiler from which it was
reduced. This fact, however, does not imply that the important features of a
compiler have been eliminated. One binary order of magnitude was obtained by
not including diagnostics, and another by avoiding all but the most trivial form
of optimization. While it is true, and must frequently be emphasized, that half of
the code in a good compiler should be concerned with error detection, this phase

Prologue i

is so highly dependent upon the source language chosen that the amount the
student could learn in this area would not warrant the added complexity which
it would introduce at this point. While some optimization techniques now have
more generality than do diagnostics, they still tend to vary greatly with the
architecture of the machine for which they are designed. Since the purpose
requires that the compiler be readily implementable upon a wide variety of
unspecified computers, the only optimization retained in the compiler is the
provision that a single working register not be reloaded when it already contains
the desired variable.

Crutch coding. The ability of the compiler to accept a mnemonic or numeric
machine-language instruction after any statement is called crutch coding, imply-
ing the descent to a lower, less intelligible level of language. While this feature is
not used in the compiler itself, it is essential in the implementation of the
operating system, where efficiency could not be achieved without it. It is worth
noting that the crutch-coding generator alone, in the absence of all other
generators, provides a simple one-to-one assembler capability.

Hash coding. Since the compiler employs scatter storage addressing, it
demonstrates the basic features of the only generally accepted method of
handling symbol tables in compilers and assemblers.

CO-NO tables. The Pilot compiler uses a transition matrix, called a Current
Operator-Next Operator (CO-NO) table for parsing; hence it demonstrates the
fastest parsing technique known.

Extensible. Rather than reducing the size of the CO-NO table to correspond
to the limited size of Pilot, the matrix has been deliberately left sparse. Any
combination of operators preceding and following an operand may be assigned a
specific meaning, resulting in a call upon an individual generator. This allows for
easy extension, by supplying a new generator for any point in the matrix not
previously implemented. Further, because the compiler was obtained by com-
pressing a large working Algol-type compiler, system design problems are
avoided when it is expanded.

Modular. Despite the fact that all variables are global, the compiler for Pilot
is written in modular fashion. It consists of a driver and 14 subroutines.
Consequently, each of these subroutines can be analyzed and understood sepa-
rately.

Self-compiler. The fact that a source listing of the compiler exists in the
same language which it accepts provides several advantages. By compiling the
source deck once, and using the output of that compilation to compile the same
source deck again, success of the second compilation can be taken as evidence of
a “bug-free” compiler. While reaching this moment of truth invariably provides
the thrill of accomplishment for the compiler implementor, it also paves the way
for the greater thrill, since it makes it possible to make and test extensions
quickly. As a result, the student who wishes to design a completely new language

Xiv COMPILER AND OPERATING SYSTEM IMPLEMENTATION

facility may do so, and obtain results with a run or two. Further, it illustrates
the only known method of avoiding the usual situation, in which it is expected
that fast compilation implies slow execution, and, conversely, that producing
highly optimized code requires long compilation times. Since any self-compiler
must execute only object code which it has itself generated, it must either
generate poor code slowly, or excellent code rapidly. In practice, this means that
the initial version will usually be slow, but that improvements may constantly be
added. This technique has been adopted in the implementation of a number of
impressive production compilers, including those for extended Fortran com-
pilers, such as LRLTRAN and Fortran IV-H.

Versatile. The versatility of the language has been demonstrated in more
advanced projects. It has been used by graduate students to write a D level PL/I
to Pilot translator in Pilot language. By providing a Pilot compiler for a given
computer, they are able to compile their PL/I translator. Then, by feeding the
output of their translator to their Pilot compiler, they are able to compile and
execute PL/I programs. Other graduate students have used Pilot in thesis re-
search, leading to demonstrations of dynamic algebra, inverse compiling, pro-
gram simplification, and the reorganization of multipass programs.

Contents

Preface e ix
Prologue P oE TSI T T xi

b 25N

PART I. COMPILING SYSTEMS

Chapter 1

Introduction L R PO B 1
Chapter 2

Structural Design of the Pilot Compiler 9
Chapter 3

The BNF Definitionof a Languagec.cviiiiiiinenan.. 12
Chapter 4

Defining an Internal Compiler Codecoviiiiiii.n. 16
Chapter §

The LeXical SCAMN + v s smusessmssnssmassassmsssssussossesssss 20
Chapter 6

Number Conversionoooviiiinrininriinierneeeennenaennn 27
Chapter 7

Hashing Symbol Tablesccciiiiiiiiiiiininnnnnnn. 31
Chapter 8

The Basic Scan .. .o.vvnitniin ittt ittt it e 36
Chapter 9

Compiling Declarative Statementsc.c.ceveniiiennnnennnn. 39
Chapter 10

Handling Forward Referencesccoiiiiiiiiininnnnnnns 45
Chapter 11

CompilingwithaCO-NOTablecovniiiniiiiiiinnn. 49
Chapter 12

Generating Reentrant Code i, 58

vii

X COMPILER AND OPERATING SYSTEM IMPLEMENTATION

be inadequate for expansion into a complete software system, since it was
obtained by reducing such a system.

The approach used in this manual, which has enjoyed some measure of
success for several hundred students, therefore consists of the presentation of a
small, systems-oriented language called Pilot, followed by two completed exam-
ples of its use, first to write a compiler, and then to write a time-sharing
operating system. In a one-semester course, 85 percent of the students have
succeeded in implementing the compiler with from one to fifteen extensions,
while covering the bulk of the material in a text such as that of Rosen, Gries, or
Donovan.

A list of those texts currently available is given in the references at the end of
Chapter 1.

Lafayette, Indiana

Maurice H. Halstead

Chapter 1

Introduction

Since virtually all compilers have much in common, it should be possible to
study any good compiler for a language such as Fortran, Algol, Cobol, Jovial or
PL/I, and from a detailed analysis of that one compiler on a single machine, to
obtain the knowledge which could be readily transferred to or from the others.
While possible, such a method is uneconomic in terms of effort, primarily
because such compilers, in addition to their fundamental or basic components,
must of necessity contain a far larger proportion of code which is concerned
only with the details of their particular environment and implementation. With
that approach, the trees obscure the forest.

At the other extreme, one could distill, from the population of all compilers,
those principles which they exhibit in common, and study them in a completely
abstract way. While this extreme holds the advantage over the other, it suffers
from a paucity of detail which leaves the student with a compartmentalized
knowledge which is often too fragmentary to provide a firm base from which he
could design and implement a processor independently. He may recognize a
forest, but miss a tree.

Rather than choosing either extreme, this laboratory manual assumes that the
broad view may be obtained from an increasing number of good books on
compilers and operating systems, but that, in the final analysis, the only way
that a student can both know, and know that he knows, this interesting area is
to study both the objectives and the details of their implementation. This
manual, therefore, provides sufficient detail to enable the student to completely
understand and implement both a self-compiler and a time-sharing operating
system. While both the self-compiler and the operating system have been
obtained by reducing larger systems by an order of magnitude, they still retain
the important functions of their predecessors.

Before starting the actual implementation of the compiler illustrated in
chapters 1 through 14, it is advisable to consider briefly the various classes of
processors which have been developed, and to examine the gross structure of a
few of the processes which will be involved.

While there is as yet no satisfactory ordering scheme for programming

1

2 COMPILER AND OPERATING SYSTEM IMPLEMENTATION

systems, just as there is no rational method for classifying computer languages
by comparison of their level, for the purposes of this manual the following
listing should suffice.

Machine coding. The direct preparation of the numerical code of the
machine, by writing in the absolute octal, hexadecimal, decimal, or even binary,
representation of the computer involved. This is the true machine language.

Simple assemblers. Systems which provide the user with a one-to-one con-
version from mnemonic representations of machine operation codes and ad-
dresses to machine code. Frequently this is referred to as machine language.

Macro assemblers. Systems which augment the capabilities of simple assem-
blers by allowing the definition of new mnemonic operations not included in the
repertoire of instructions of the computer, achieved by a combination of such
instructions. This one-to-many expansion provides so much more power than
that available in a simple assembler that attempts are being made to reduce its
customary machine dependence.

Interpreters. Systems which are virtually the same as compilers, except that
instead of generating machine code for later execution, they transfer control to a
stored routine for actual execution upon recognition of each statement. While
interpreters fell into disuse because of their extreme slowness, they are again
becoming of interest because of the systems control they provide for multi-
programming real-time systems.

Compilers. Systems which convert higher-level language on a one-to-many
basis to machine code, which may be more expeditiously ordered than the
original order encountered in the source language.

Cross compilers. Compilers which operate on a given computer, but generate
machine code for a different computer.

Compiler-compilers. Systems which provide a mechanism and language for
semiautomatic production of compilers.

Self-compilers. A term occasionally used to describe a compiler written in its
own language, usually with the proviso that it is intended to be readily extend-
able in source language and capable of improvement in object-code efficiency.

High-level translators. Systems which translate from a given source language
to an object language which in itself is another source language. To date the
principle uses of this class of translator has been to translate from one version of
a given language to a later version of the same language.

Decompilers. Systems which accept as input the machine language of a given
computer, and translate it to a quasi-machine-independent, higher-level language.
While to date no decompilers have reduced programmer intervention to zero,
they have been economically successful in converting applications programs
from one generation of computers to another, and in improving documentation
of early machine language programs.

The next dozen chapters concern the implementation of a self-compiler, but

Introduction 3

as can be seen from preceding definitions, this must also cover a compiler. In
addition, by virtue of the inclusion of a machine language statement type in the
language definition, the self-compiler will be seen to include a simple assembler.
To prepare for these exercises, we will start by considering the broad outlines
of two processes, the structure of a compiler, and the process of transferring a
self-compiler from one computer to another.
The basic elements of a compiler must provide for:

1. Accepting source language from an input device

2. Converting from the binary-coded-decimal (BCD) or similar input code
of the device to a more efficient internal compiler code (ICC)

3. Scanning the source string to determine which actions are required

4. Generating the proper code, either in an intermediate or machine
language form.

Beyond these basic functions, a compiler should also pr - e facilities for-

. Diagnosing errors

. Deleting redundant expressions

. Allocating working registers

. Optimizing and relocating object code

. Providing various compile-time statistics

[, I UV S B

Since these additional features are left as options to the student, and only the
basic functions are demonstrated in the compiler, we may accept Fig. 1.1 as an
illustration of the compiling process.

From Fig. 1.1, it can be noted that some combinations found in the source
string, in ICC, will result in the immediate generation of object code, while
others, such as labels, will merely result in the saving of information for later use
by the compiler.

Transferring a Self-compiler

Suppose one has implemented a compiler for some language L, written in the
machine or assembly language of computer X, and producing object code for
computer X, and assume that a compiler for the same language is needed on, and
for, a new computer Y. In this case, except for the personal experience gained,
there is nothing in the original X compiler that will be of much help in
producing the new Y compiler. However, if the original X compiler had also
been a self-compiler, then the situation would have been somewhat different,
because there would have been a source listing (and card deck) of the original X

4 COMPILER AND OPERATING SYSTEM IMPLEMENTATION

Y

INITIALIZE TABLES J

LOAD SOURCE
CARD

)

CONVERT TO
INTERNAL COMPILER
CODE (ICC)

)

ICC
PARSE STRING YES
(ADVANCE) EMPTY
l SELECT APPROPRIATE GENERATOR

| 1ssue osuecT CODEJ

[STORE INFORMATION FOR COMPILER]

Fig. 1.1. The compiling process.

compiler in language L. Since there is to be no change in language L, none of
those parts of the compiler which deal solely with the properties of language L
will require any change. The only changes required in the source listing will be
in: (1) the object code issued by the generators, and (2) any of the routines
which depend upon the word length or character code of the machine. Let us
call item 2 the housekeeping function, and leave it without change for the
moment. If we prepare a new source deck, identical to the original, except for
the generators, which we revise to make them issue the object code appropriate
to the new computer Y, then we will have a source deck which can still be
compiled by the original compiler. When this compilation has been performed,
the result will be a new compiler, or strictly speaking, a cross-compiler. This
cross-compiler will still run only on the original machine, X, but it will produce

Introduction 5

COMPILER SOURCE DECKS COMPILER OBJECT DECKS
IN_LANGUAGE L, IN MACHINE LANGUAGE
EARLIER _CONVERSION e
H| A |6 -
X X OR TRANSLITERATION l"x A 15
REVISE]
Y | X

oLD
He] A |Gy "{|__comPILER)‘

I)
»

>
@

J) cross [H a le
COMPILER y y
I IDENTICAL
Y A

NEW
COMPILER

X
<

>

@
<

SAME NEW
COMPILER

{

IMPROVED
COMPILER

T
X
>
Y
T
)
>\
0\

Fig. 1.2, The process of bootstrapping a self-compiler from Computer X to Computer Y.

object code which will only run on the new machine, Y. At first glance it might
appear that the source listing (with its revised generators) which produced the
cross-compiler could be compiled by the cross-compiler to produce a compiler
which would run on, and for, the new machine. While this is almost true, in
practice it is necessary to revise the housekeeping routines in the source listing
before doing so.

The process is shown in Fig. 1.2, in which the symbology has the following
meaning. The column on the left contains source decks of the various versions of
the compilers, always written in the same language, L. Each deck contains a
complete compiler, and consists of the three parts: housekeeping, H; analysis, A.:
and generators, G. The subscripts denote the machine for which the component
has been specialized. Since the analysis portion is machine independent, it is not

