®

. By
James M. Downe

] And

Steven M. Rogers

(z commodore

BLACHSBUH B e T e

PET® Interfacing

by

James M. Downey and Steven M. Rogers

Howard W. Sams & Co,, Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

PET is a registered trademark of Commodore Business Machines, Inc.

Copyright © 1981 by James M. Downey
and Steven M. Rogers

FIRST EDITION
FIRST PRINTING—1981

All rights reserved. No part of this book shall be
reproduced, stored in a retrieval system, or transmitted
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
While every precaution has been taken in the

prepar: o

resp
liabil
the i

Inte
Libr
Coverl

Printec

Preface

During the past few years, we have seen the small computer
market grow remarkably as computers such as the TRS-80, APPLE,
and PET became available. These small computers provided a great
deal of computing power at very low cost, so they could be used in
places where such computing power would have been prohibitively
expensive just a few years before. While many users were able to
use a computer by itself, many other users found it necessary to
connect peripheral devices to their computer, using such devices as
printers, analog converters, remote controllers, and others, for use
in a wide variety of applications. Many people have found, however,
that there are many devices that they would like to connect to their
computer, but since standard interfaces do not exist, they have been
faced with what seems to be a formidable task—designing and
building an interface by themselves.

The purpose of this book on PET interfacing is to give you a
better idea of how specialized interfaces can be built and used with
this powerful computer system. BASIC language programs will be
used throughout the book, so you should be familiar with this power-
ful programming language. Likewise, the designs use standard digital
electronic components from the SN7400 (or equivalent) family, so
you should at least have an understanding of what these devices do
before you tackle the interface circuits that are provided for you.

Unlike many computers that simply provide generalized bus con-
nectors, the Commodore PET computer has several special-purpose
interface connectors that ease the job of interfacing the computer to
“real world” devices.

These connectors provide access to the following input/output
ports:

® The PET User Port.
® The Memory Expansion Port.
® The IEEE 488 Standard Interface Port.

Each of these ports has a specific use, and each is covered in detail
in this book. Nowhere else will you find comparable information
about interfacing the PET through each of these sets of signals.

Of particular interest is the IEEE-488 port. The signals provided
for you at this port have been defined by the IEEE 488 standard,
and many computer manufacturers and instrument makers have
adopted this standard in their equipment. Thus, it is possible to
easily interface these IEEE 488-compatible devices with a minimum
amount of effort. In many cases, the interfacing simply involves the
connection of standard cables between the various IEEE-488-com-
patible devices. Software is used to control the transfer of special
information over the bus signal lines. Since more and more devices
are being made available with IEEE 488-compatible 1/O ports on
them, we have paid special attention to the IEEE 488 bus. It is
also possible to use this set of bus lines to interface devices to the
PET, even if those devices do not use the standard bus conventions.

You should realize by now that this book is really a how-to-do-it
book that covers many interfacing techniques for each of the three
1/0 ports. Each interfacing example is described in detail, with
complete software and circuit details provided for you. There are
‘many experiments that you can do to learn more about interfacing the
PET computer, and to learn more about the control signals. The
experiments in this book can be used with all versions of the PET
computer that have a 25-by-40—character video display, including
some of the older PET computers that have been upgraded with new
read only memories (ROMs).

In the first two chapters, we will introduce you to the PET and
guide you, step by step, through the construction of a simple bread-
boarding circuit that can be used to provide easy access to the sig-
nals that are available at the user port. This circuit is easy to put
together using standard wire-wrap techniques, and you will find it
to be very useful for further interfacing proiects.

Chapter 3 covers many of the interfacing techniques, both ele-
mentary and advanced, that may be used to control the user port con-
trol signals. Included here are the instructions for using the BASIC-
language commands that actually control the user port; PEEK,
POKE, and WAIT. You will also learn the proper use of the AND,
OR, and NOT operators to control I/O devices. When you have fin-
ished Chapter 3, you should have an excellent understanding of the
use of the user port, and how the 6522 I/0 chip is used in the PET.
No assembly language programming is used in this chapter. How-

ever, assembly-language programmers should be able to quickly
convert the example programs into the corresponding assembly-
language program steps.

In Chapters 4, 5, and 6, we have taken a different approach to
interfacing the PET, by using the memory expansion port. You will
be able to use many of the interfacing techniques that were covered
in Chapter 3. For example, you will learn about the various decoding
techniques that are used to allow interfaces to select different 1/0
devices, and how the bidirectional data bus is used to transfer infor-
mation to and from the computer and I/O devices. In Chapter 5,
you will see how to construct a simple breadboard that can be used
with the memory expansion port, and in Chapter 6, there are many
experiments that you can do to reinforce your understanding of how
the memory expansion port may be used to control practical inter-
face circuits.

A summary in Chapter 7 provides some additional interfacing
information, for example, how the PET may be interfaced to non-
logic devices that may require either high currents, high voltages,
or both. Information about analog converters is also provided.

Chapter 8 covers the use of the IEEE 488 bus on the PET. De-
tailed information describes the signals on the bus, and their uses.
A special interface is also described; one that is used to control a
printer. Since people will be interested in using the IEEE 488 bus
for other applications, we have also provided a general-purpose inter-
face circuit that will allow you to interface non-IEEE-488-compatible
devices to the PET through the IEEE 488 bus. This is done by using
another microprocessor chip to simulate the presence of a normal
IEEE-488 1/0 device on the bus. Complete details, including as-
sembly-language listings and sources of parts, are provided for you.
This general-purpose “listener/talker” can be used in many applica-
tions, since it is not specific to one device, or one type of interface.

We would like to thank the Blacksburg Group for their encourage-
ment and assistance with this book.

JAMES M. DOWNEY
STEVEN M. ROGERS

Contents

CHAPTER 1

INTRODUCTION To PET MICROPROCESSOR HARQWARE' . . .
Bits and Bytes — Memory — Peripheral Devices— Organj
of the PET — Types of Data

CHAPTER 2

BUILDING THE USER PORT BREADBOARD
The Interface Cable — User Port to Breadboard — The Power
Supply — Constructing the Breadboard Circuit Card — Wiring the
Logic Probe — Checking the Operation of the Logic Probe

CHAPTER 3

INTERFACE EXPERIMENTS WITH THE USER PORT .
Introduction — General Information About the User Port — Wir-
ing the Breadboard for Parallel /O Experiments — Wiring ‘the
Breadboard for the Serial Output Experiments — General Infor-
mation About the User Port Shift Register — Caution Wiring the
Breadboard for Shift Register Input — Advanced Interfacing Topics
— Expanding the Available Input and Output Lines — Digital-to-
Analog Conversion — An Analog-to-Digital Converter for the
User Port

CHAPTER 4

THE MEMORY EXPANSION PORT
The Ins and Outs of Computer Logic — The Bidirectional Data Bus
— Latches, Three-State Buffers, and Data Transfer — Address De-
coding in the PET

20

33

99

CHAPTER 5

CONSTRUCTION OF AN I/O BREADBOARD

FOR THE MEMORY PORT . ; g
General Construction — Power Supply — The Address Decoder e
The Output Port — The Input Port — Checking the Breadboard

CHAPTER 6

EXPERIMENTS WITH THE BREADBOARD
Using the Logic Probe — The Address Decoder — The Output Port
— The Input Port — Flags and Decisions — An Analog-to-Digital
Converter — Advanced Memory Port Interfacing Topics

CHAPTER 7

SoME HANDY INTERFACING HINTS AND KINKS .
Binary Coded Decimal — Graphic Plotting Using Digital to Analog
Converters — A Simple Analog to Digital Converter Using a DAC
— Handling ASCII Type Data Through the User or the Memory
Expansion Ports — Interfacing to High Power and Other Non-TTL
Devices

CHAPTER 8

INTERFACING TO THE IEEE 488 PORT
oF THE PET COMPUTER
The IEEE 488 Signals — The leference Between IEEE 488 and
Serial Communications — IEEE 488 Interface Commands and
Mnemonics — Basic Statements That Use IEEE 488 Interface Bus
— PET/IEEE 488 Interface Construction Projects

APPENDIX A

FLow CHARTS OF THE PET/IEEE CONTROLLER
AND LISTENER/TALKER SEQUENCES .

APPENDIX B

PROGRAM LISTING FOR THE PET/IEEE
GENERAL-PURPOSE LISTENER/TALKER .

APPENDIX C

SOURCES OF SUPPLY FOR ELECTRONIC PARTS

INDEX

118

133

165

176

225

238

255

257

CHAPTER 1

Introduction to PET
Microprocessor Hardware

The heart of the PET computer is a 6502 microprocessor. The
6502 is a single large scale integrated circuit that incorporates, in
one 40-pin package, all of the necessary logic circuitry required by
a digital computer. The arithmetic and logical functions which the
PET performs are all done within this single integrated circuit. If
you peer under the PET cover, however, you will notice that it
contains not just one, but dozens of integrated circuits. Some of these
integrated circuits are memory ‘“chips” while the others are so-
called “support chips.” The latter serve to provide the necessary
logic to interface the 6502 to the memory, the keyboard, the video
display, and to the other input/output ports which are present in
the PET. The 6502 processor in the PET is a vivid testimony of the
giant stride in technology which the computer industry has experi-
enced in recent years. Only a decade ago the equivalent computing
power would have cost many thousands of dollars and would have
required hundreds of integrated circuits. Today, the 6502 can be
purchased for under $20.00. Before we proceed with the funda-
mentals of interfacing various devices to the PET, it will be useful
to understand what the 6502 is, how it processes information, and
how it is used in the PET.

BITS AND BYTES

It is convenient for a computer to use a binary or base-two
arithmetic system. Only two digits are used in such a system, one

9

and zero. Since digital electronics also have only two defined states
(a logic high, plus 5 volts for TTL logic, and a logic low, zero volts
for TTL), it is possible to let one state represent a one and the other
state represent a zero. Traditionally, the high state is the one and
the low state is the zero. In a binary system, numbers have successive
digits of ones and zeros with the rightmost digit representing the one’s
place, the next digit to the left, the two’s place, the next the four’s
place, and so on. The powers of two and their decimal equivalents are:

97 26 25 24 23 22 9! 20
128 64 32 16 8 4 2 1

For example, the number 010011 represents one 1, one 2,no 4, no 8§,
one 16, and no 32. Its decimal equivalent is 19, which is simply the
sum of 16+2+1. The largest binary number that you could represent
with 6 digits is 111111 which has a decimal value of 63. To represent
a larger number would require more digits. In the computer, a binary
number is carried by a group of electrical circuits, each assigned.to
represent a specific digit in the number. The electrical state, high or
low, determines if any digit is a one or a zero. By convention, each
such binary digit is referred to as a bit. The entire group of bits which
comprise a number is referred to as a word.

The 6502 uses an 8-bit word length (8 binary digits). This means
that, for most operations, the computer operates on 8 bits at a time.
The 8-bit word length is often referred to as a byte. The term byte
was originally introduced by IBM. Their computers used a 16-bit, or
larger, word length; but for certain operations, such as handling
ASCII data types, it often was necessary to manipulate only 8 bits
at a time. Specific instructions were incorporated into the computer’s
hardware to perform operations on these 8-bit subunits and the
8-bit subunit of a word was called a byte. Today most microprocessors
use an 8-bit word length. So even though eight bits represent a full
word in those microprocessors the term byte for their 8-bit word
remains popular.

Eight bits limit the maximum value which can be expressed by
a byte to 255. When numbers larger than 255 are to be handled
they must be operated on as two or more bytes. In programming such
multibyte operations care must be taken to keep track of which
byte represents which portion of the number. It is important not
to get them confused. Nevertheless, with careful programming, as
has been done in PET’s BASIC interpreter program, the 6502 can
handle numbers much larger than 256 with ease. The calculations,
however, are still performed within the 6502 using only 8 bits per
step.

Most computer systems, including the PET, consist of 3 basic parts.
The first is the central processor (in this case the 6502) which we

have already described. The central processor does all of the arith-
metic and logical operations for the computer. The other two parts are
the memory and the input/output (usually abbreviated I/O) devices.

MEMORY

Memory in a computer serves two major functions. First, it is
the place where the computer program is stored. Second, it gives the
computer the ability to temporarily save information for future use.
Memory in the PET is organized into 8-bit bytes, in order to corre-
spond to the 8-bit word length of the 6502. The 6502 has the ability
to randomly access up to 65,536 separate bytes of memory. This is
done by placing a binary code on 16 signal lines called the address

+5V

8
Vee 07 fe2— = (MsB)

4
—
6

| 3

T

30 DATA BUS
0] ez 31

0|
W)
™|
=i
o
~N

RW EBA——= (DATA DIRECTION SIGNAL)

0213~ (TIMING SIGNAL)

> 100 A2 o

16 ADDRESS BUS

6502 Alfo—

AO (LSB)

1'21 AND 1

Fig. 1-1. Major signals on the 6502 microprocessor.

1

bus. Each code selects a unique word of memory. Fig. 1-1 shows a
diagram of the pin configuration for the 6502. The 16 address lines
can be seen at the right side of the figure. Of course, 65,536 is 2'¢
and represents all possible binary combinations of the 16 address
lines. Though the 6502 can access up to 65,536 words of memory,
it is not necessary to completely fill all of this space. The PET com-
puters come in different sizes—4K, 8K, etc. The K refers to the
number 1024 which is a fundamental unit of memory. Thus, a 4K
PET actually has only 4096 bytes of its memory space filled with
memory for program storage. Memory in the PET is divided into
two types: read/write memory and read only memory.

Read/Write Memory

As its name suggests you can both read from as well as write to
read/write (R/W) memory. Such memory is often referred to as
random access memory (RAM). This is, of course, a misnomer, since
all memory types can be randomly accessed. Nevertheless, the term
RAM enjoys wide usage in this context and will probably continue
to do so. The way the 6502 communicates with memory is quite
simple. Fig. 1-1 shows that there are 8 data lines on the 6502. The
data lines are the route by which all data enters and exits the 6502
(arrows indicate direction of information flow). Since the data flows
in both directions on these lines, we refer to them as a bidirectional
data bus. Because data can be either entering or exiting the 6502 on
the same set of wires, this could obviously lead to confusion. To
avoid such confusion, the computer signals memory that data is
either to enter or exit the 6502 by the state of the read/write (R/W)
line. If the R/W line is in a logical high state (45 volts), then data
will be read into the 6502 via the data bus. If the R/W line is at a
logic low (0 volts), then data will be sent from the 6502 on the
data bus. Since the 6502 operates in the range of a million operations
each second, timing of these data transfers is very critical. Precise
timing is accomplished by the use of a strobe pulse from the phase-
two clock which tells the memory that data should be transferred
at that exact moment. For example, a typical read cycle from memory
would proceed as follows: First, the location within memory would
be selected by the 6502 placing the proper binary code on the 16
address lines. At the same time the 6502 causes the R/W line to go
high, designating a read cycle. The memory chip responds by se-
lecting the proper word of memory, determined by the code on the
address lines, and by getting that 8-bit word ready to send to the
6502 over the data lines. The actual data transfer is accomplished,
however, only when the phase-two clock line goes from its high to
its low state. Timing diagrams of both memory-read and memory-
write cycles appear in Fig. 1-2. The direction of information flow

12

ADDRESS BUS

/////// % ADDRESS VALID W
N A
PHASE 2 / \

DATA BUS
%DATA VALID

/ 6502 WRITE / PERIPHERAL DEVICE -~

Y

CYCLE TIMING LATCHES DATA HERE

ADDRESS BUS

ADDRESS VALID W
PHASE 2 /7 \

RIW

DATA BUS i
]
' % DATAVALID | W
i
6502 e
READ CYCLE 502 LHAJF?EI-IES
TIMING

Fig. 1-2. Timing for data transfer in the 6502 microprocessor.

on the data lines is indicated by the status of the R/W line and the
precise timing for data transfer is controlled by the trailing edge of
the phase-two clock. The shaded areas indicate that the signals are
undefined at that time.

Read Only Memory

The second type of memory found in the PET is read only mem-
ory (ROM). As its name implies, the computer can read the contents
of ROM but cannot store any new data in it. The advantage of a

13

ROM is that the program it contains is in essence permanently stored
in the computer so that it is always available. ROMs have played an
important role in the development of microcomputers. Two major
advances, which have lowered computer costs are microprocessor
chips such as the 6502 and semiconductor R/W memory. Until re-
cently, computers used magnetic core type memory, which was very
expensive. Semiconductor memory, as used in the PET, is much
less expensive; however, it has one shortcoming. Magnetic core
memory retains its data, even when the power is removed, but semi-
conductor R/W memory does not. We refer to this type of memory
as being volatile, since the memory contents seem to ‘“evaporate”
each time the computer is turned off. This volatile memory created
a serious problem for computers using semiconductor memory. Com-
puters using magnetic core memory traditionally had elaborate front
panels, through which an initialization program could be tediously
entered by hand. Since magnetic core memory is nonvolatile, the
initialization program would stay in memory once it was entered.
Thus, that job should only have to be done once. In a computer with
volatile memory, however, one was required to reenter the initializa-
tion program by hand each time the computer was turned on before
it could operate. To overcome this inconvenience, read only mem-
ories were incorporated in these machines to hold the initialization
programs. In fact, ROMs worked so well that the expensive front
panel was no longer required, and most of today’s microcomputers
have eliminated the facility for directly loading memory from
switches on the front panel.

Not only does the PET have an initialization program in ROM,
it also has the entire BASIC interpreter incorporated in ROM so
that it is ready with a high-level language as soon as it is turned on.
Read only memories come in many varieties. Some, like those in
the PET, must be programmed at the factory, while others can be
field programmed and are called programmable read only memory
(PROM). One of the most popular types of ROM is the EPROM
which can be erased with ultraviolet light for reprogramming.

PERIPHERAL DEVICES

The third fundamental part of any computer is the group of de-
vices that serve as inputs and outputs. These are often referred to
as I/O devices. Obviously, no computer would be of much value
unless it had some means of receiving data from the outside world,
and, likewise, a means for outputting its results. The PET, for ex-
ample, has several means of receiving input data, such as the key-
board, the cassette drive, and the IEEE 488 bus. Since the purpose
of this book is to show the reader how to interface his own peripheral

14

devices to the PET, we are very interested in this aspect of the
computer.

The 6502 handles peripheral devices a little differently than most
of the other microprocessors in that it simply treats them as memory.
An input device, such as the keyboard, becomes a type of read only
memory. Similarly, an output device, such as a printer, becomes a
type of write only memory. Just like any other memory, peripheral
devices must be assigned a unique 16-bit address code, which can
be recognized when that code is present on the address bus. Logic in
the interface must recognize when the appropriate address code is
present and alert the device to get ready for an exchange of informa-
tion over the data lines that will occur when the strobe pulse arrives.

ORGANIZATION OF THE PET

With the above background in mind, we can now describe how the
6502 is specifically implemented in the PET. Although the 6502
allows for 64K of memory or peripheral devices, the PET only fills
a fraction of this memory space. Fig. 1-3 shows a map of the PET
memory. The “top” of the memory space is filled with ROMs and
I/0 devices. The bottom region of memory is filled with read/write
memory. The space in the middle is open and can be filled with either
R/W memory to increase the program storage space for BASIC,
ROMs to perform special functions, or additional I/O devices.

When the power is turned on, the 6502 is automatically reset. On
reset, the 6502 begins executing the program stored in ROM at the
top of the memory. This program causes the PET to first see how
much R/W memory it has. Starting with location 1024, it sequentially
stores a code at each word of memory, and then reads it back again.
If the memory is good it will read back the same number it stored.
It continues this until it reaches a memory location which did not
successfully store the number. This will either be a defective memory
location or, hopefully, the top of the R/W memory. The initialization
program then tells the BASIC interpreter how much R/W memory
is present so that it does not try to store or execute a BASIC pro-
gram which requires more memory than is available. After the mem-
ory size has been determined, the 6502 begins executing the program
stored in the BASIC ROMs. From that point on, the system is under
control of the BASIC interpreter program.

BASIC is a high-level language that does not normally make pro-
visions for manipulating individual memory locations or I/O devices
other than the keyboard and the screen. To facilitate the use of non-
standard I/O devices, several extensions to the language have been
added to PET BASIC. The first of these is the PEEK statement.
The PEEK statement allows the user to see what value is actually

15

ADDRESSES. IN DECIMAL

65535
SYSTEM ROM
61440
51439
10
59392
9L yicrosoFTe
BASIC
49152 IN RN
9151
OPEN
36864
RIW MEMORY SIZE 36563
VARIES IN DIFFERENT RIW MEMORY
MODELS OF PET g FORVIDED
32767
RIW MEMORY
FOR BASIC
16348 PROGRAM
i STORAGE
PET
8192
16K i
] 409
PET 8K
PET 4k
PET 1023 g MEMORY
l . FOR SYSTEM

Fig. 1-3. The PET memory map.

stored in any memory location. The statement PRINT PEEK (20000)
will cause the decimal value of the contents of memory location
20,000 to be printed on the screen. If an input device were interfaced
to the PET at decimal address 20,000, then every time the above
statement was executed, the number input to the PET by that device
would appear on the screen.

A companion command to PEEK is POKE. POKE stores a num-
ber into memory instead of reading from memory. Thus, POKE
20000, 200 causes the binary equivalent of 200 to be stored at memory
location 20,000. If an output device “resided” at that address then
that command would result in the binary equivalent of 200 being
outputted to that device.

16

