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Preface

We are pleased to present the proceedings of the 5th Workshop on Algorithms
in Bioinformatics (WABI 2005) which took place in Mallorca, Spain, October
3-6, 2005. The WABI 2005 workshop was part of the five ALGO 2005 confer-
ence meetings, which, in addition to WABI, included ESA, WAOA, IWPEC,
and ATMOS. WABI 2005 was sponsored by EATCS (the European Associa-
tion for Theoretical Computer Science), the ISCB (the International Society
for Computational Biology), the Universitat Politécnica de Catalunya, the Uni-
versitat de les Illes Balears, and the Ministerio de Educacién y Ciencia. See
http://www.lsi.upc.edu/ " wabi05/ for more details.

The Workshop on Algorithms in Bioinformatics highlights research work
- specifically developed to address algorithmic problems in biosequence analysis.
The emphasis is therefore on statistical and probabilistic algorithms that address
important problems in the field of molecular and structural biology. At present,
given the enormous scientific and technical efforts in functional and structural
genomics, the relevance of the problem is therefore constrained by the need for
sound, efficient and specialized algorithms, capable of achieving solutions that
can be tested by the biological community. Indeed the ultimate goal is to im-
plement algorithms capable of extracting real features from real biological data
sets. Therefore the workshop aims to present recent research results, including
significant work in progress, and to identify and explore directions of future
research.

Original research papers (including significant work in progress) or state-
of-the-art surveys were solicited on all aspects of algorithms in bioinformatics,
including, but not limited to: exact and approximate algorithms for genomics,
genetics, sequence analysis, gene and signal recognition, alignment, molecular
evolution, phylogenetics, structure determination or prediction, gene expression
and gene networks, proteomics, functional genomics, and drug design. We re-
ceived 94 submissions in response to our call for papers, and were able to accept
35 of these. In addition, WABI 2005 hosted a distinguished lecture by Dr. Marino
Zerial of the Max Planck Institute for Molecular Cell Biology and Genetics in
Dresden, given to the entire ALGO 2005 conference.

We would like to sincerely thank all the authors of submitted papers, and the
participants of the workshop. We also thank the Program Committee and their
sub-referees for their hard work in reviewing and selecting the papers for the
workshop. The Program Committee consisted of the following 40 distinguished
researchers:

Pankaj Kumar Agarwal (Duke University)
Tatsuya Akutsu (Kyoto University)
Amir Amihood (Bar-Ilan University)
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Alberto Apostolico (Purdue University)

Craig Benham (University of California, Davis)
Gary Benson (MSSN, New York)

Mathieu Blanchette (McGill University)

Nadia El-Mabrouk (University of Montreal)
Olivier Gascuel (LIRMM, Montpelier)

Raffaele Giancarlo (University of Palermo)
Roderic Guigo (IMIM, Barcelona)

Michael Hallet (McGill University)

Daniel Huson (University of Tuebingen)
Gregory Kucherov (INRIA Nancy)

Michelle Lacey (Tulane University)

Jens Lagergren (KTH Stockholm)

Giuseppe Lancia (Univeristy of Udine)

Gad M. Landau (University of Haifa)

Thierry Lecroq (Université de Rouen)

Bernard Moret (University of New Mexico)
Shinichi Morishita (University of Tokyo)
Elchanan Mossel (Univeristy of California, Berkeley)
Vincent Moulton (University of Uppsala)

Lior Pachter (University of California, Berkeley)
Knut Reinert (Free University of Berlin)

Isidore Rigoutsos (IBM Watson)

Marie-France Sagot (INRIA Rhéne-Alpes)
David Sankoff (University of Ottawa)

Sophie Schbath (INRIA Jouv-en-Josas)

Eran Segal (Rockefeller University)

Charles Semple (University of Canterbury)
Joao Carlos Setubal (Virginia Polytechnic Institute)
Roded Sharan (Tel Aviv Univeristy)

Steven Skiena (University of New York, Stony Brook)
Jens Stoye (University of Bielefeld)

Esko Ukkonen (University of Helsinki)

Lisa Vawter (Aventis Inc., USA)

Alfonso Valencia (CNB-CSIC, Spain)

Tandy Warnow (University of Texas)

Lusheng Wang (City Univeristy of Hong Kong)

Finally we would like to especially thank Bernard Moret, the de facto steering
committee, for answering questions on history and precedence, for his advice on
difficult protocol issues, and for setting up and hosting the EasyChair refereeing
system used by the Program Committee.

July 2005 Rita Casadio and Gene Myers
WARBI 2005 Program Co-chairs



Vol. 3695: M.R. Berthold, R. Glen, K. Diederichs, O.
Kohlbacher, I. Fischer (Eds.), Computational Life Sci-
ences. XI, 277 pages. 2005.

Vol. 3692: R. Casadio, G. Myers (Eds.), Algorithms in
Bioinformatics. X, 436 pages. 2005.

Vol. 3678: A. McLysaght, D.H. Huson (Eds.), Compara-
tive Genomics. VIII, 167 pages. 2005.

Vol. 3615: B. Ludischer, L. Raschid (Eds.), Data Integra-
tion in the Life Sciences. XII, 344 pages. 2005.

Vol. 3594: J.C. Setubal, S. Verjovski-Almeida (Eds.), Ad-
vances in Bioinformatics and Computational Biology.
X1V, 258 pages. 2005.

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VII, 133 pages. 2005.

Vol. 3380: C. Priami (Ed.), Transactions on Computational
Systems Biology I. IX, 111 pages. 2005.

Vol. 3370: A. Konagaya, K. Satou (Eds.), Grid Computing
in Life Science. X, 188 pages. 2005.

Vol. 3318: E. Eskin, C. Workman (Eds.), Regulatory Ge-
nomics. VII, 115 pages. 2005.

Vol. 3240: 1. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004.

Vol. 3082: V. Danos, V. Schachter (Eds.), Computational
Methods in Systems Biology. IX, 280 pages. 2005.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004.

Vol. 2812: G. Benson, R.D. M. Page (Eds.), Algorithms
in Bioinformatics. X, 528 pages. 2003.

Vol. 2666: C. Guerra, S. Istrail (Eds.), Mathematical Meth-

ods for Protein Structure Analysis and Design. XI, 157
pages. 2003.



Table of Contents

Expression

1. Hybrid Methods

Spectral Clustering Gene Ontology Terms to Group Genes by
Function
Nora Speer, Christian Spieth, Andreas Zell . .......................

Dynamic De-Novo Prediction of microRNAs Associated with Cell
Conditions: A Search Pruned by Expression
Chaya Ben-Zaken Zilberstein, Michal Ziv-Ukelson . .................

2. Time Patterns

Clustering Gene Expression Series with Prior Knowledge
Laurent Bréhelin . . .. .. ..o

A Linear Time Biclustering Algorithm for Time Series Gene Expression
Data
Sara C. Madeira, Arlindo L. Oliveira ... ..............cccvvue.on..

Time-Window Analysis of Developmental Gene Expression Data with
Multiple Genetic Backgrounds
Tamir Tuller, Efrat Oron, Erez Makavy, Daniel A. Chamovitz,
BNy ChoT : c ssmsuvssenossimsesessessessssiosssssssisssasws@nis

Phylogeny

1. Quartets

A Lookahead Branch-and-Bound Algorithm for the Maximum Quartet
Consistency Problem
Gang Wu, Jia-Huai You, Guohui Lin .................cccouuu....

Computing the Quartet Distance Between Trees of Arbitrary Degree
Chris Christiansen, Thomas Mailund, Christian N.S. Pedersen,
Martin Randers . ....... ... e



VIII Table of Contents

2. Tree Reconciliation

Using Semi-definite Programming to Enhance Supertree Resolvability
Shlomo Moran, Satish Rao, Sagi Snir ........... ... iiiiiiin... 89

An Efficient Reduction from Constrained to Unconstrained Maximum

Agreement Subtree
Z.8. Peng, HE. Ting ..z .oisaenscaimiinios ssifsosinnimineissene 104

3. Clades and Haplotypes
Pattern Identification in Biogeography
Ganeshkumar Ganapathy, Barbara Goodson, Robert Jansen,

Vijaya Ramachandran, Tandy Warnow .......... ... ... c.cov.... 116

On the Complexity of Several Haplotyping Problems
Rudi Cilibrasi, Leo van Iersel, Steven Kelk, John Tromp ............ 128

A Hidden Markov Technique for Haplotype Reconstruction
Pasi Rastas, Mikko Koivisto, Heikki Mannila, Esko Ukkonen ........ 140

Algorithms for Imperfect Phylogeny Haplotyping (IPPH) with a Single

Homoplasy or Recombination Event
Yun S. Song, Yufeng Wu, Dan Gusfield . .......................... 152

Networks

A Faster Algorithm for Detecting Network Motifs
Sebastian Wernicke ......... .. i e 165

Reaction Motifs in Metabolic Networks
Vincent Lacroiz, Cristina G. Fernandes, Marie-France Sagot . . ...... 178

Reconstructing Metabolic Networks Using Interval Analysis
Warwick Tucker, Vincent Moulton .............c.cciiiiinininni.. 192

Genome Rearrangements

1. Trasposition Model

A 1.375-Approximation Algorithm for Sorting by Transpositions
Isaac Elias, Tzvika Hartmamn . ....... ..., 204



Table of Contents

A New Tight Upper Bound on the Transposition Distance

ANthony LaDATTE s w5 cmsmesmamesms s vasimsw o ewnmsis s

2. Other Models

Perfect Sorting by Reversals Is Not Always Difficult
Séverine Bérard, Anne Bergeron, Cedric Chauve,

Christophe Paul ......... ...t

Minimum Recombination Histories by Branch and Bound

Rune B. Lyngss, Yun S. Song, Jotun Hein ........................

Sequences

1. Strings

A Unifying Framework for Seed Sensitivity and Its Application to
Subset Seeds

Gregory Kucherov, Laurent Noé, Mikhail Roytberg .................

Generalized Planted (I,d)-Motif Problem with Negative Set

Henry C.M. Leung, Francis Y.L. Chin................ccoiiuin...

Alignment of Tandem Repeats with Excision, Duplication, Substitution
and Indels (EDSI)

Michael Sammeth, Thomas Weniger, Dag Harmsen, Jens Stoye .. ...

The Peres-Shields Order Estimator for Fixed and Variable Length
Markov Models with Applications to DNA Sequence Similarity

Daniel Dalevi, Devdatt Dubhashi . .......... ... iiiiiuninennn.

2. Multi-alignment and Clustering

Multiple Structural RNA Alignment with Lagrangian Relaxation

Markus Bauer, Gunnar W. Klau, Knut Reinert . ...................

Faster Algorithms for Optimal Multiple Sequence Alignment Based on
Pairwise Comparisons

Pankaj K. Agarwal, Yonatan Bilu, Rachel Kolodny . ................

Ortholog Clustering on a Multipartite Graph

Akshay Vashist, Casimir Kulikowski, Ilya Muchnik . ................

IX



X Table of Contents
3. Clustering and Representation

Linear Time Algorithm for Parsing RNA Secondary Structure
Baharak Rastegari, Anne Condon . .............ccociiiiiiiiinian .. 341

A Compressed Format for Collections of Phylogenetic Trees and

Improved Consensus Performance
Robert S. Boyer, Warren A. Hunt Jr, Serita M. Nelesen ............ 353

Structure

1. Threading

Optimal Protein Threading by Cost-Splitting

Philippe Veber, Nicola Yanev, Rumen Andonov, Vincent Poirriez .... 365
Efficient Parameterized Algorithm for Biopolymer Structure-Sequence
Alignment

Yinglei Song, Chunmei Liu, Xiuzhen Huang, Russell L. Malmberg,

Ying Xu, Liming €l :v.uaisinvsvsnaivinainsmaims sasssinssas s 376

2. Folding

Rotamer-Pair Energy Calculations Using a Trie Data Structure

Andrew Leaver-Fay, Brian Kuhlman, Jack Snoeyink ................ 389
Improved Maintenance of Molecular Surfaces Using Dynamic Graph
Connectivity

Eran Eyal, Dan Halperin .............. 0. iieiiiiiiaiannnn... 401

The Main Structural Regularities of the Sandwich Proteins
Alezander Kister .:s:wrnsnsaseninmpsssmasssmassssssmesssdainsgsss 414

Discovery of Protein Substructures in EM Maps
Keren Lasker, Oranit Dror, Ruth Nussinov, Haim Wolfson .......... 423

Author Index . ... ... e 435



Spectral Clustering Gene Ontology Terms to
Group Genes by Function

Nora Speer, Christian Spieth, and Andreas Zell

University of Tiibingen, Centre for Bioinformatics Tiibingen (ZBIT),
Sand 1, D-72076 Tiibingen, Germany
nspeer@informatik.uni-tuebingen.de

Abstract. With the invention of biotechnological high throughput me-
thods like DNA microarrays, biologists are capable of producing huge
amounts of data. During the analysis of such data the need for a group-
ing of the genes according to their biological function arises. In this pa-
per, we propose a method that provides such a grouping. As functional
information, we use Gene Ontology terms. Our method clusters all GO
terms present in a data set using a Spectral Clustering method. Then,
mapping the genes back to their annotation, genes can be associated to
one or more clusters of defined biological processes. We show that our
Spectral Clustering method is capable of finding clusters with high inner
cluster similarity.

1 Introduction

In the past few years, high-throughput techniques like microarrays have be-
come major tools in the field of genomics. In contrast to traditional methods,
these technologies enable researchers to collect tremendous amounts of data,
whose analysis itself constitutes a challenge. Since these techniques provide a
global view on the cellular processes as well as on their underlying regulatory
mechanisms, they are quite popular among biologists. After the analysis of such
data, using filtering methods, clustering techniques or statistical approaches, re-
searchers often end up with long lists of interesting candidate genes that need
further examination. Then, in a second step, they categorize these genes by
known biological functions.

In this paper, we address the problem of finding functional clusters of genes
by clustering Gene Ontology terms. Based on methods originally developed for
semantic similarity, we are able to compute a functional similarity between GO
terms [13]. This information is fed into a spectral clustering algorithm [15]. This
has the advantage, that after mapping the genes back to the GO terms, a gene
with more than one associated term (function) can be present in more than one
cluster which seems biologically plausible.

The organization of this paper is as follows: a brief introduction to the Gene
Ontology is given in section 2. Related Work is discussed in section 3. Section
4 explains our method in detail. The experimental setup and the results on real
world data sets are shown in section 5. Finally, in section 6, we conclude.

R. Casadio and G. Myers (Eds.): WABI 2005, LNBI 3692, pp. 1-12, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Relations in the Gene Ontology. Each node is annotated with a unique accession
number.

2 The Gene Ontology

The Gene Ontology (GO) is one of the most important ontologies within the
bioinformatics community and is developed by the Gene Ontology Consortium
[21]. It is specifically intended for annotating gene products with a consistent,
controlled and structured vocabulary. Gene products are for instance sequences
in databases as well as measured expression profiles. The GO is independent from
any biological species. It represents terms in a Directed Acyclic Graph (DAG),
covering three orthogonal taxonomies or ”aspects”: molecular function, biological
process and cellular component. The GO-graph consists of over 18.000 terms,
represented as nodes within the DAG, connected by relationships, represented
as edges. Terms are allowed to have multiple parents as well as multiple children.
Two different kinds of relationship exist: the ”is-a” relationship (photoreceptor
cell differentiation is, for example, a child of cell differentiation) and the ”part-
of” relationship that describes, for instance, that requlation of cell differentiation
is part of cell differentiation.

Providing a standard vocabulary across any biological resources, the GO
enables researchers to use this information for automatic data analysis done by
computers and not by humans.

3 Related Work

While GO analysis is an increasingly important field, existing techniques suffer
from some weaknesses: Many methods consider the GO simply as a list of terms,
ignoring any structural relationships [2,7,17,23]. Others regard the GO primar-
ily as a tree and convert the GO graph into a tree structure for determining
distances between nodes [11]. Again others use a pseudo-distance that does not
fulfill all metric conditions and relies on counting path lengths [3]. This is a deli-
cate approach in unbalanced graphs like the GO those subgraphs have different
degrees of detail.

Besides, the aim of some methods is primary either to use the GO as prepro-
cessing (1] or as visualization tool [6]. Only few approaches utilize its structure
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for computation. Many methods are scoring techniques describing a list of genes
annotated with GO terms [2,6,7,11,17,23]. But to our knowledge and apart from
our earlier publications [20,19], there exists no automatic functional GO-based
clustering method. One method is related to clustering and can be used to in-
dicate which clusters are present in the data [3]. However, it suffers from the
weaknesses that come along with using pseudo-distances as mentioned earlier.

4 Methodology

Our method consists of different steps that will be explained separately in this
section: the mapping of the genes to the Gene Ontology, the calculation of func-
tional similarities on GO terms, the spectral clustering algorithm and finally how
the appropriate number of clusters is determined.

4.1 Mapping the Genes to the Gene Ontology

The functional similarity measure operates on pairs of GO nodes in a DAG,
whereas in general, researchers are dealing with database ids of genes or probes.
Therefore, a mapping M that relates the genes of a microarray experiment
to nodes in the GO graph is required. Many databases (e.g. TTEMBL (GOA-
project)) provide GO annotation for their entries and companies like Affymetrix
provide GO mappings to their probe set ids as well. We used GeneLynx [8] to
map the genes of dataset I. Hvidsten et al. [9] provide a mapping for dataset II.

4.2 Similarities Within the Gene Ontology

To calculate functional similarities between GO nodes, we rely on a technique
that was originally developed for other taxonomies like WordNet to measure
semantic similarities between words [12].

Following the notation in information theory, the information content (IC)
of a term ¢ can be quantified as follows [13]:

IC(t) = —In P(t) (1)

where P(t) is the probability of encountering an instance of term ¢ in the data.

In the case of a hierarchical structure, such as the GO, where a term in the
hierarchy subsumes those lower in the hierarchy, this implies that P(¢) is mono-
tonic as one moves towards the root node. As the node’s probability increases,
its information content or its informativeness decreases. The root node has a
probability of 1, hence its information content is 0. As the three aspects of the
GO are disconnected subgraphs, this is still true if we ignore the root node ” Gene
Ontology” and take, for example, ”biological process” as our root node instead.

To compute a similarity between two terms, one can use the IC of their
common ancestor. As the GO allows multiple parents for each term, two terms
can share ancestors by multiple paths. We take the minimum P(t), if there
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is more than one ancestor. This is called Py, for probability of the minimum
subsumer [13]. Thereby, it is guaranteed, that the most specific parent term is

selected:

PmS(ti’tj) = te.lé'r(ltint~)P(t) (2)
il

where S(t;,t;) is the set of parental terms shared by both ¢; and ¢;. Based on
Eq. 1 and 2, Lin extended the similarity measure, so that the IC of each single
node was also taken into account [12,13]:

_ 21ans(t,-,tj)
- In P(ti) + In P(tj) '

s(ti,t;5) (3)

Since P (tiyt;) > P(t;) and Pns(ts,t;) > P(t;), its value varies between 1 (for
similar terms) and 0.

One should note, that the probability of a term as well as the resulting
similarity between two terms differs from data set to data set, depending on the
distribution of terms. Therefore, our clustering differs from a general clustering
of the GO and a subsequent mapping of the genes to such a general clustering.
Due to our approach, we are able to arrange the resulting cluster boundaries
depending on the distribution of the GO terms either more specific (if the terms
concentrate on a specific part of the GO) or more general (if the terms are widely
spread).

4.3 Spectral Clustering

We decided to cluster GO terms, not genes, because of two reasons: first, we do
not face the problem of combining different similarities per gene like in earlier
publications [19,20] and second, after mapping the genes back to the GO, they
can be present in more than one functional cluster which is biologically plausible,
since they can also fulfill more than one biological function.

Recently, Spectral Clustering methods haven been growing in popularity.
Several new algorithms have been published [22,18,14,15]. A set of objects (in
our case GO terms) to be clustered will be denoted by T, with |T'| = n. Given an
affinity measure A;; = A;; > 0 for two objects i, j, the affinities A;; can be seen
as weights on the undirected edges ij of a graph G over T'. Then, the matrix
A = [Ajyj] is the real-valued adjacency matrix for G. Let d; = .1 Aj; be called
the degree of node ¢, and D be the diagonal matrix with d; as its diagonal.
A clustering C = {C4,C5,...,Ck} is a partitioning of T into the nonempty
mutually disjoint subsets Cq,C3,...,Ck. In the graph theoretical paradigm a
clustering represents a multiway cut in the graph G.

In general, all Spectral Clustering algorithms use Eigenvectors of a ma-
trix (derived from the affinity matrix A) to map the original data to the K-
dimensional vectors {y1,72,...,7n} of the spectral domain R%. Then, in a sec-
ond step, these vectors are clustered with standard clustering algorithms. Here,
we use K-means. We chose the newest Spectral Clustering algorithm by Ng et
al. [15] and we will now review it briefly:
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1. From the affinity matrix A and its derived diagonal matrix D, compute the
Laplacian matrix L = D~1/2AD~1/2,

2. Find v!,v2,...,v%, the Eigenvectors of L, corresponding to the K largest
Eigenvalues.

3. Form the matrix V,xx = [vl, v2, .., UK] with these Eigenvectors as columns.

4. Form the matrix Y from V by renormalizing each of X’s rows to have unit
norm.

5. Cluster the rows of Y = [y1,72,...,7n] as points in a K-dimensional space.

6. Finally assign the original object i to cluster j if and only if row «; of the
matrix Y was assigned to j.

Since Spectral Clustering relies on the affinity matrix A, it is easy to apply
it to any kind of data, where affinities can be computed. For numerical data,

affinities are usually computed with a kernel function, e.g. A;; = exp(:%%;—ﬁ),
with d(7, j) denoting the Euclidean distance between point ¢ and j and ¢ denoting
the kernel width. For non-numerical data, like GO terms, affinity can either be
defined in the same way, given a distance measure d. This approach has the
advantage of non-linearity, controlled by the kernel width o, which allows for
sharper separation between clusters. But it has also disadvantages: the question
of how to deduce o in a meaningful way arises and additionally, for many data
types, especially the GO, similarity is much easier to define since it does not need
to fulfill any metric conditions. As noted in [16], there is nothing magical about
the definition of affinity. Therefore, we directly apply our similarity matrix as
affinity matrix.

4.4 Cluster Validity

We selected the number of clusters K in our data according to the Davies-Bouldin
index [5]. Given a clustering C = {C1,Cy,...,Ck}, it is defined as:

1 A(Cy) + A(C)
DB(C’)—Egmax{——é(ci’Cj) } (4)

where A(C;) represents the inner cluster distance of cluster C; and 6(C;, C;)
denotes the inter cluster distance between cluster C; and C;. K is the number
of clusters. Small values of DB(C) indicate a good clustering,.

A(C;) and 6(C;, Cj) are calculated as the sum of distances to the respective
cluster mean and the distance between the centers of two clusters, respectively.
Since we use similarities, not distances, and cannot compute means in the GO,
we apply the DB-Index in the spectral domain R¥ (after the Eigenvector de-
composition) where we are dealing with simple numerical data.

5 Computational Experiments

5.1 Data Sets

One possible scenario where researchers would like to group a list of genes ac-
cording to their function is when they received lists of up- or down-regulated
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genes from the analysis of an DNA microarray experiment. Thus, we chose
two publicly available microarray data sets, annotated the genes with the GO
and used them for functional clustering. We only use the taxonomy biological
process, because we are mainly interested in gene function in a more general
sense. However, our method can be applied in the same way for the other two
taxonomies.

The authors of the first data set examined the response of human fibrob-
lasts to serum on ¢cDNA microarrays in order to study growth control and cell
cycle progression. They found 517 genes whose expression levels varied signifi-
cantly, for details see [10]. We used these 517 genes for which the authors pro-
vide NCBI accession numbers. The GO mapping was done using GeneLynx [8].
After mapping to the GO, 238 genes showed one or more mappings to biologi-
cal process or a child term of biological process. These 238 genes were used for
the clustering.

In order to study gene regulation during eukaryotic mitosis, the authors of
the second data set examined the transcriptional profiling of human fibroblasts
during cell cycle using microarrays [4]. Duplicate experiments were carried out
at 13 different time points ranging from 0 to 24 hours. Cho et al. [4] found
388 genes whose expression levels varied significantly. Hvidsten et al. [9] pro-
vide a mapping of the data set to GO. 233 of the 388 genes showed at least
one mapping to the GO biological process taxonomy and were thus used for
clustering.

5.2 Experimental Design

In the experiments, we had the problem of how to compare our method to
other known clustering algorithms, because to our best knowledge, there is no
clustering method that does a clustering only due to a similarity matrix. Instead,
most algorithms need distances. Beside that, most clustering techniques were
originally developed for numerical data and therefore utilize means during the
clustering process which we cannot compute in the GO. Only linkage methods
work on a proximity matrix, although this is also usually a distance matrix.
Average Linkage clustering is known to be its most robust, non-means based
representative. Therefore, we compare our approach to a modified version of
an Average Linkage algorithm that joins the most similar clusters, instead of
joining those with the smallest distance. Inner cluster similarity of cluster C; is
computed as follows:

1
S(C) = IEme = :c:‘# aal -

with s(t;,%;) denoting the similarity between term ¢; and ¢; and |C;| denoting
the number of terms in cluster C;.

For Spectral Clustering, K-means was carried out 25 times and the solution
with the minimum distortion was taken as proposed in [15]. For both algorithms,
we performed runs for different values of K, ranging from K = 5,6,...,25.



