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FOREWORD

CoLLECTIONS of problems are useful both for faculty use in the evaluation of the state of a
student’s knowledge and for the student himself to use in self-evaluation. This collection of
problems is at the level of the present state of knowledge expected of a student candidate
for certification in optics and many of these problems are, in fact, drawn from certification
examinations.

Physical optics is a traditional subject and a very large choice of problems is available in
this area. An attempt has been made here to provide a broad selection of modern material
using some of the newer experimental and theoretical results and, in addition, those areas
of electromagnetic theory relevant to optics.
~ Quantum optics, which involves the elements of wave mechanics and its applications to
atomic and molecular spectroscopy and, thus, to the propagation of electromagnetic
radiation in material media, has only recently been introduced into optics courses. ‘As a
result of the relatively short experience in the presentation of these techniques, the problems
in this area are generally presented at a somewhat lower level than the classical problems
in spite of their significance in modern optical work.

An attempt has been made here to find a balance between extreme detail in solution and
sufficient detail as to be of use. In general, whenever detail is not presented in the solution,
reference is made to the general principle used. References are often given in the form
§ 8.3 (chapter 8, section 3) or § B.3 (Appendix B, section 3) and are keyed to the comple-
mentary volume Optics: Part 1, Electromagnetic Optics; Part 2, Quantum Optics, which
forms part of this series. References to Appendices A and B of this volume are given in
the form Appendix A (or B) and references to Problems (or parts thereof) as Problem 1 (or
Problem 1, II. 1, etc.).

Many thanks are due our colleagues who provided us with a selection of probiems, thus
enhancing our coverage. To these individuals, MM. Boiteaux, Fert, Frangon, Jacquinot,
Kahane, Nikitine, Rouard, Rousset, Servant, Vienot, goes our gratitude. The solutions,
however, are ours, and thus any error in detail or omission must remain with us.

We are also grateful to Professor J. W. Blaker for the accurate translation from the
French.

M.R., J.P.M.
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PRINCIPAL PHYSICAL CONSTANTS

( MKS A rationalized units)

Avogadro’s number A = 6.025X 10*® molecules/kilomole
Volume of one kilomole of an ideal gas

at standard conditions vV, =22420m?
Ideal gas constant R = 8.3169X10? joules/kilomole-°K
Boltzmann constant k = R/(GT = 1.380X 1072 joule/°K
Permittivity of free-space g0 = 8.834X 107 farads/m
Permeability of free-space po = 4xX 1077 = 1.257X10~° henrys/m
Faraday’s constant (F = 96.522X10° coul/kilomole
Electron charge e = 1.602x10"" coul
Rest mass of the electron m, = 9.1083X1073 kg
Mass of the proton M, = 1.6724X10"%" kg
Specific charge of the electron e/m, = 1.759X 10" coul/kg
Planck’s constant h = 6.6252X 1073 joule-sec
Speed of light in vacuum ¢ . =299793X10° m/s
Rydberg constant for H R, = 10,967,758 m™!
Ground state radius of H ro =0.5292X107°m
Bohr magneton pp = ehjdwm, = 9.27X10~%* A-m®
Compton wavelength for the electron A, = 2hjmc = 4.8524X107* m

Energy conversion factors:
1 calorie = 4.185 joules

1 electron-volt = 1.602X 10~*? joules
= 8068 cm™~* (X hc)

Unless otherwise indicated, these constants will be used for the calculations which follow.
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INTERFERENCE

PROBLEM 1
Visibility of Young’s Fringes

In all of these problems assume that the source is monochromatic and radiates at a wave-
length A = 0.55 p.

I

1. A point source S, illuminates two narrow, parallel slits, F; and F,, ruled vertically in
an opaque screen. The slits are separated by 2 mm. One observes the interference pattern
in a plane = parallel to and at a distance of 1 m from the screen. A point M in the plane x is
assigned the coordinates X and ¥ (¥ parallel to the slits). Determine the expression govern-
ing the distribution of the illumination over the plane z.

2. How is the image modified when So is replaced by a narrow slit Fy parallel to F, and
F,? Calculate the interference pattern.

3. The observation of the fringes is made using a Fresnel eyepiece similar to a thin lens of
focal length f = 2 cm. What are the advantages of observation with an eyepiece in compari-
son to observation with the naked eye? Indicate the positions of the eyepiece and the eye
with respect to plane z for which the observation of the fringes is made under the best
conditions.

b1

Cover the slit F; with an absorbing screen (which introduces no phase-shift) of optical
density A = 2.

(The optical density is defined by: A = log;o fddens intensity )

transmitted intensity -
Find the visibility, ¥, of the fringes defined by:
_ Trax— i
Imax+Imin °
where 1., and I ; represent the maximum and minimum intensities respectively.
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I1I
Here a large incoherent source is used.

1. The source slit has a height A (fixed) and a width a (variable). This is situated at a
distance d = 1 m behind the plane of the slits F; and Fs. Under these conditions, what is the
expression for the illumination at a point M in the plane #? How does the visibility of the
fringes, V, vary as a function of a? Use this expression to describe the phenonienon observed
when one progressively opens the source slit Fo. Determine the maximum width of the slit
so that the loss in contrast does not exceed 107/.

2. To increase the luminosity of the image an incoherently illuminated grating is used as a
source (slics parallel to F; and Fg). Determine the width a of the transparent intervals and
the grating step p so that the visibility retains its preceding value.

v

1. Assume that the source slit Fo is sufficiently narrow that it can be considered as a line
and replace the Fresnel eyepiece observing apparatus by a photocell. Place the slit of the cell
in the plane 7 parallel to the fringes. The height of the slit is fixed; its width is variable. As-
sume that the intensity of the photocurrent is proportional to the luminous flux falling on
the cell. Give the law for the variation of the current as a function of the abscissa X of the
slit. Describe what happens when the slit is"opened.

2. What is the expression for the intensity of the current assuming that the source slit is
not vanishingly fine but has width a? Determine the visibility factor.

A%

1. Take the width of the source slit as a = 0.01 mm and the width of the slit of the
detector as b = 0.02 mm. Find the visibility.

This theoretical visibility ¥, is greater than the experimental visibility ¥, which has a
value ¥, = 0.5. Show that this can be explained by taking into account the parasitic current
3, (dark current) found in the absence of all luminous flux. Calculate the ratio; /S
of the dark current to the maximum signal intensity.

2. The width of the slit of the detector is fixed by its construction at a value b = 0.02 mm,
while, on the other hand, the width a of the source slit can be altered.

Calculate V, and present graphically its variation as a function of a. For what value of a
will 7, be maximum? What can be concluded from this investigation?
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SOLUTION
I. Coherent illumination
1. Point source

Designate by x and y the coordinates in the plane of the pupil and by X and ¥ the co-
ordinates of a point M in the image plane (Fig. 1.1). The infinitely thin slits diffract uniformly
in the plane perpendicular to Oy.

I g
’ff
5 d o j 7
; P
I 2
FiG. 1.1
Only the line Ox is illuminated with a light distribution
I = 4 cos? (rwus) (1)
where
sin ¢ 1 X1
‘ST YITDa @

One gets this result from the fact that, for coherent illumination, the distribution of the
amplitude in the image is equal to the Fourier transform of the amplitude distribution in the
pupil (see Appendix A).

The amplitude in the exit pupil is

f(x) = 6(x+ %)+5(x—%). . 3)
The amplitude in the image plane is
Fw)=FT[f(x)] - C))
Fu) = A(u) [eFs+ e~imus] ()
with
A(u) = F.T.[8x)] = 1 (6)
from which
F(u) = 2 cosmus — period 2/s.
and

Iu) = |F(u) |2 = 4 cos? nus — period 1/s. ®)

2. Linear source

Here one observes no interference along the lines parallel to Oy. Each point on the source
slit gives a light distribution centred on the geometric image and parallel to Ox. One then
has fringes parallel to F; and F,.
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The period of these fringes is such that:
Au=1/s )
giving a linear fringe spacing:

D
AX = 17. (10)

I(u)

}------_---
c

FiG. 1.2

Numerically :

- 10-3
AX = 0.55X —— = 0.275 mm.

3. Observation of the fringes

Naked eye. A normal eye working at its near point (25 cm) has difficulty in resolving the
image. In effect the fringe spacing is seen at an angle:

This value is only slightly larger than the angular limit of resolution of the eye which is of
the order of 1 minute or 3X 10~ 4 rad.

Eyepiece+eye. To avoid fatigue it is preferable that the eye does not accommodate. For
this reason one uses an eyepiece whose focal plane coincides with the plane 7; the image is
then formed at infinity. This image is easily resolvable since the angular fringe spacing
becomes

0.275
& ==—ga— 0.0135 rad.

The magnification of the eyepiece is

angle at which the image is seen
angle of the object when at the near point

8’
G=—=
€

_ Note. In principle the slits diffract through an angle of 180° so that, even with large
aperture, the eyepiece cannot. collect all of the rays. The observer, in order to collect the
maximum  light, must place his ‘pupil in the plane F 1, F, conjugate to the plane F,, F,
(Fig. 1.3).
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-

’

L
® |
F| l ﬁ|

5
R

’

.._'_a]._.__ .___

FiGc. 1.3

The slits are at a distance & from the lens, their images are at a distance &', such that:

1 181
& & f
1 1 1 52
0057 TF T 102
& =1.965cm ~ 2 cm.
The magnification is equal to
1
5"

3|3,
]
m]ﬂ:

The image has dimension

’

-1 _2
n _5_52~0.04mm.

All of the rays which enter the eyepiece get to the eye since the value of 7’ is less than the
minimum diameter of the pupil of the eye.

I1. The vibrations passing through Fy and F, are in phase but
have different amplitudes

“When the vibrations are out of phase by ¢, the intensity at point M is given by
I(M) = A3+ A3+24,4, cos ¢ = I+ 1I,+2+/L1, cos . fan

The maximum and minimum intensities are respectively equal to

Inax = ('\/I—1+ VE)2
Imin = ('\/ii - \/Tz)z,
the visibility is
V — 2'\/11—T2 )

12
I,+1, (12

Assuming that the optical density filter is placed in front of F; one has:

log1o L _ 2 where L _ 100,
I, I
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(A+A)
(4, A)

Fic. 1.4

from which V =0.2 (Fig. 14).

The positions of the maxima and minima are the same with or without the filter. On the
other hand the visibility, ¥, is not unity unless the amplitudes passing through the slits are
equal.

111. Large source. Incoherent illumination (§ 6.7)
1. The source is a large slit

All the points lying on a line parallel to Oy give fringes parallel to Oy with period Au = 1/s.

Break the slit (width a) into an infinite number of vanishingly thin slits.

Let v be the reduced coordinate of a point in the source plane. The width of the slit can be
characterized by

vo = afid. (13)
The intensity produced on M by an element of width dv is

dI = AXh{1+cos 2a[(u+ v)s]} dv. (14)

A = constant, Avs = path difference between the disturbances arriving from Fy and Fo.
Each elementary slit of infinitesimal width gives a system of fringes with period Au = 1/s
and centred on the geometric image of the elementary slit.
Thus, the intensity transmitted to M by the slit source is

+0o/2
I= A4h f [1+cos 2n(u+v)s] dv (15)
—v2
I1=1 [1 +smn % cos 2nus]. (16)
One finds:
_ sinmos
wes

The graph of ¥ is given in Fig. 1.5.
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\Ms /7 \3/s

AT =

FiG. 1.5

Numerical application. One wants ¥ = 0.9 so that

sin oS 1 1
=09 > 7ves = =~ » vg = .
VoS 4 4s

From the definition of v, one gets

1 a A 0.55x 1073
e — . 6
45 = 7d so that a—d4s—10 X‘4x2

V=09 for a=70upu.

The fringes vanish for a = 275 .

The Van Cittert-Zernike theorem (Appendix B) gives this result immediately. The degree
of coherence between the slits F; and F, is given by the Fourier transform of the intensity
distribution in the source plane. Since the problem is one-dimensional, it is sufficient to
assume that the source is a slit parallel to OY with a width a and that the pupil is formed by
two points, P; and Ps, set in an opaque screen (P1and P; corresponding to the intersection
of the slits Fy and F, with the line Ox are separated by a distance ). The intensity distribu-
tion in the source can be represented by a rectangular function (Fig. 1.6).

Iv) =0 for v<—v9/2 and >+ v0/2, an
Iv)=1 for —vo/2 < v<+uvy2.

@(x)

2 R & M;PIO
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One finds
- _ sinmwex X
F.T.[I(v)] = ¢(x) = . (Fig.1.7). (18)

Place each imaginary diffraction spot on the pupil so that its centre coincides with P;.
The fringe visibility is equal to the value of ¢(x) at point Py, that is, at ¢(s) (Fig. 1.7). One
can see that the fringe contrast is still good for s = $ve.

2. The source is an incoherently illuminated grating

Call v, the reduced coordinate corresponding to the grating spacing p.

(a) Assume initially that the illuminated strips are infinitely thin.

The intensity distribution in the source is a Dirac series (Fig. 1.8). Its Fourier transform
is a Dirac series of period 1/v, (Fig. 1.9).

¢(x)
I{v)
1
1
1 1
0 % 2y, v é"—s—"‘é
FiG. 1.8 Fic. 1.9

As before, place the imaginary diffraction spot ¢(x) on the pupil so that ¢(0) coincides
with P;. The fringe visibility will be unity if
1/v,=s (Fig.19)
that is, if
s = |p,
so that

p:.

(b) The grating openings have a finite width a. I(v) is a unbounded series of rectangular
functions (Fig. 1.10) with period v, and width v,.

10.0C

Fic. 1.10
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The Fourier transform is shown in Fig. 1.11.

1 @(x)
09--="7.
~
N
Y
A Y
Y
\
A Y
\
\
\
\\
R R S,
[7] 1, Wy~~o . X
Fic. 1.11

To have an image well contrasted one needs
1 1

§=—=——,
Vp 4'00
Numerical results
Grating spacing p = 275 p.
Width of the grating openings a = 70 .
Note. One can also get these results by another simple process (F ig. 1.12).

FiG. 1.12

(a) Fine grating openings: the fringes remain fixed if the vibrations transmitted by an
opening T are phase-shifted by an integral multiple of 2z when arriving at P; and P,.

(b) Grating with large openings: the vibrations transmitted from the edges of any window
should produce at P, and P, a path difference lying between k2 and (k+—)l in which case
the fringes do not overlap (the fringes produced by the extreme edges of an opening are
shifted by a maximum of 1 1 fringe).

IV. The opening of the detector has finite width b
1. The source slit is infinitely thin

The fringes on plane zz have unit contrast (see question I). On the other hand, because of
the finite width of the detector slit, the flux recorded by the receiver is never zero (Fig. 1.13).
The illumination is the same at all points along a single vertical in the observing plane. Break
the window of the receiving cell down into elements of width du and height /.

2¢
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09

0,77

05t

10 55 275 a(u)
Fic. 1.13

Call u, the reduced coordinate which corresponds to the linear width b of the slit. The flux
which penetrates through the surface element at abscissa u' is

d® = BI(1+cos 2 nus) du, (19)
from which
u'+u,l2 . 0
D) = j d® = Blu, [1 + SO oo 2nu's]. (20)
/2 TUS

As before, one can define a coefficient of visibility by

__ sinu,s
TS

@0

As long as u, is less than s, the intensity of the photocurrent, proportional to the luminous
flux, varies in a reasonably sinusoidal fashion. When one opens the slit, the difference
between the maxima and minima lessens. Finally, for u, = 1/s, the intensity of the photo-
current does not vary regardless of the placement of the cell.

2. The source slit has a finite width a

One has
I(u) = Io[l $ERT0 o 2nus], (22)
VoS
from which
uw+u,2 3
&) = Blvo f [1 + 30700 cos 2.nus] du, (23)
' —ugl2

sin U . sin wves
US VoS

D) = BIucvo[l + cos 2nu's]. (24)



