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Preface

Ever since the time of Boltzmann, the desire to understand how macroscopic irrever-
sible behavior arises out of the complexity of the underlying microscopic processes
has been driving the development of the statistical mechanical theory of many-body
systems. While most of the "fundamental" questions associated with irreversible pro-
cesses have yet to be answered to the satisfaction of all physicists, the theory has
obtained valuable results for "down-to-earth" physics by giving molecular expressions
for those quantities encountered in macroscopic evolution laws. Most of those ques-
tions concerning the general form of macroscopic evolution equations, their features
and symmetries, and their connection with the molecular process can be answered
quite generally, independent of particular models, on different levels of approxima-
tion, each lTevel being related to the others by a hierachical structure.

These questions can be approached in an elegant manner by utilizing the projection
operator technique, which will be presented in detail in this volume. This mefhod is
employed to derive transport equations for the relaxation of the mean, Langevin equa-
tions for the fluctuations about the mean, and, further, on a more detailed level,
Fokker-Planck and master equations. The relations between the various evolution
equations will be discussed and the equations themselves will be illustrated by ap-
plying them to specific modeis.

The emphasis of this article is on the unifying éspects of the different statis-
tical mechanical theories of relaxation and fluctuation in many-body systems. How-
ever, the work does not treat those approaches which begin particularly close to
the molecular level, such as the Boltzmann equation, because these approaches, of
necessity, depend on details of particular models.

I am grateful to the many colleagues who have added to my insights and under-
standing. In particular, I am indebted to those with whom I have had the pleasure
of close collaboration: W. Eidlich, P. Talkner, P. Hanggi, R. Graham, and, especi-
ally, the late M.S. Green.

Special thanks are also due to H. Haken whose suggestions and efforts as a co-
editor were most helpful.
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Finally, it is a pleasure to thank Ms. E. Effenberg for the skillful prepara-
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1. Introduction and Survey

Many-body systems composed of a great number of identical constituents exhibit on
the macroscopic level a rather simple behavior described by equations of motion
for a few macroscopic variables. Examples are the Navier-Stokes equations for
fluids, the Bloch equations for magnetic relaxation, the Fokker-Planck equation
for a Brownian particle, and the master equation for atoms interacting with a ra-
diation field. The statistical mechanical theory relates this macroscopic dynamics
with the underlying microscopic process. In spite of its complexity in detail, the
microscopic process has simple formal properties: it is a reversible dynamical
process which is determined completely by the Hamiltonian H and the initial proba-
bility density p(to) from which all properties of the system can be calculated, at
least in principle.

Because of the common structure of the microscopic dynamics, the macroscopic
evolution laws of nonequilibrium systems possess common features as well. Among
those is most notably the fact that the macroscopic evolution equations can be
cast into the form of transport equations! which are determined by a thermodynamic
potential and a matrix of transport coefficients. The underlying molecular nature
of the systeim is primarily manifest in this particular form. The irreversible part
of the transport equations is related to correlations of molecular fluxes by
GREEN-KUBO-type formulae [1,2], while the reversible part has a Poisson bracket
(or commutator) structure [3,4]. Kinetic equations seemingly as different as the
Navier-Stokes equations and the Pauli master equation display their common features
when they are cast into the form of transport laws. The analogy is not complete,
but it is extremely helpful if one wants to borrow techniques developed to under-
stand one system for the study of another one.

In this article we make an attempt to develop a general foundation of the statis-
tical mechanics of irreversible processes and to provide a theoretical framework
within which the correspondence between the macroscopic relaxation and fluctuation
behavior of a rich variety of many-body systems can be assessed. The approach is
based on macroscopic kinetic equations of the form of (possibly generalized) trans-

1 We shall use the term transport equation in a broader sense than usual.



ﬁort equations which are derived from the underlying molecular dynamics by means
of the projection operator technique. At no stage shall we resort to an a priori
introduction of purely stochastic elements.

Before beginning a systematic exposition, it may be worthwhile to elaborate on
some aspects of the problem we wish to address. When dealing with macroscopic
evolution equations for a many-body system, we have to bear in mind that there is
not just one macroscopic evolution law but rather a whole hierarchy of kinetic
equations, each of which gives a valid description of the macroscopic behavior
under certain physical conditions and is bound to fail if these conditions are not
met. .

Nonequilibrium systems, when they deviate only slightly from equilibrium, and
when they are not close to phase transitions, are well described on the macroscopic
level by a Gauss-Markov process. The statistical-mechanical theory of irreversible
processes, which began with EINSTEIN [5] and developed through the work of a number
of authors [6-16], realized the intimate connection between fluctuations and irre-
versible behavior. This brings about common features of the near equilibrium Gauss-
Markov processes crystallizing in ONSAGER's reciprocal relations [11,12] and the
fluctuation-dissipation theorem [10,14]. The whole theory is subsumed in the thermo-
dynamics of irreversible processes, which is now a well-settled matter of text-
books [17-19].

Clearly a macroscopic description by a Gauss-Markov process can only be an ap-
proximation, since nonlinearities, which are met within all real systems, produce
non-Gaussian stochastics, and the finite correlation times of microscopic variables
lead to non-Markovian corrections. Considering the time evolution of equilibrium
correlation functions, MORI [20] has shown that-all these corrections can exactly
be accounted for if the transport coefficients are replaced by time-retarded trans-
port kernels. In frequency space this means that the transport coefficients are
made frequency dependent. Essentially the same findings have been obtained by
KADANOFF and MARTIN [21]. These generalized transport coefficients, which are ac-
tually functions of frequency or time, are now often referred to as renormalized
transport coefficients. When they are replaced by constants, thus disregarding the
memory éffects, one recovers the standard theory of near equilibrium irreversible
processes [17-19]. The differences are particularly pronounced near critical points
where the latter theory fails. An excellent review of Mor: theory including many
applications has more recently been given by FORSTER [22].

A significant body of work published during the last three decades has searched
for a nonlinear generalization of the theory of linear irreversible processes. Such
a generalization is needed to treat nonequilibrium systems when they deviate suf-
ficiently from equilibrium. ROBERTSON [23] has shown that the exact time evolution
of the macroscopic state is governed by generalized transport equations which dif-
fer from those of Mori theory in two resepcts. The thermodynamic potential is a
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nonlinear function of the state variables and cannot be truncated after the bi-
linear terms, and the transport kernels pick up a functional dependence on the past
history of the macroscopic state when the systems leaves the vicinity of the equi-
librium state, thus rendering the transport laws nonlinear. Closely related results
have been obtained by McLENNAN [24] and ZUBAREV [25].

More recently, this author [26,27] has shown that the fluctuations about the
mean obey exact generalized Langevin equations whose systematic terms are deter-
mined by the transport laws and whose stochastic terms are related to the transport
kernels by a generalized fluctuation-dissipation theorem. These Langevin equations
are linear but nonstationary in general. By generalized statistical thermodynamics,
we mean a theory describing the relaxation and fluctuation behavior of nonequili-
brium systems by means of these generalized transport and Langevin equations. When
the theory is linearized about equilibrium, one recovers Mori theory. On the other
hand, when the memory effects are disregarded, one obtains an approximate descrip-
tion of nonequi]ibrium systems in terms of a nonstationary Gauss-Markov process.

We shall refer to this approximate theory as statistical thermodynamics. Various
authors [28-34] have proposed such a theory on the basis of phenomenclogical argu-
ments. The statistical-mechanical foundation of statistical thermodynamics [35]
leads to common features of the nonstationary Gauss-Markov processes which corres-
pond to those of Onsager's theory. Of course, the latter is obtained by linearizing
statistical thermodynamics about equilibrium (Fig.1.1)

While statistical thermodynamics extends the range of validity of the theory of
linear irreversible processes to the nonlinear regime far from equilibrium, it
still breaks down near equilibrium phase transitions if the memory effects are dis-
regarded. Away from equilibrium there are additional nonequilibrium instabilities,
like the Bénard instability [36] and the Gunn instability [37], which also are
described only roughly by a mean-field-type approximation. While these shortcomings
can be corrected by including the memory effects, it is rather cumbersome to eva-
luate the molecular expressions for the retarded transport kernels even approxima-
tely, and a more straightforward method for the calculation of renormalized trans-
port coefficients is needed.

It has been realized during recent years that the most important contributions
to the memory effects in generalized statistical thermodynamics are not caused by
the finite correlation time of the microscopic variables but rather come from non-
Tinear couplings between fluctuations of the macroscopic variables [38-42]. These
nonlinearities are disguised in the frequency dependence of the renormalized trans-
port coefficients. As a consequence, it seems natural to seek for an extended theory
of irreversible processes which retains the Markovian property but gives up the
Gaussian property. Such a non-Gaussian Markov process is governed by a Fokker-
Planck equation or a master equation, according to whether the process is continuous
or not.



For most macroscopic systems the discrete nature of the microscopic states can
safely be neglected, and they are well described on the macroscopic level by a con-
tinuous stochastic process. In a pioneering work GREEN [1] derived a Fokker—Planck
equation for such nonequilibrium systems which explicitly displays the nonlineari-
ties since the drift vector may be a nonlinear function of the state variables and
since the diffusion matrix is not necessarily constant. He further established
molecular expressions and common features for the bare transport coefficients enter-
ing the Fokker-Planck equation. Later ZWANZIG [43] showed that the macroscopic dy-
namics can be exactly described by a generalized Fokker-Planck equation containing
memory effects. In as much as non-Gaussian stochastics is accounted for by the non-
linearities, these memory effects reflect non-Markovian corrections alone. When the
memory effects are disregarded one recovers Green's results.

The Fokker-Planck equation gives a more complete description of nonequilibrium
systems than statistical thermodynamics, because it treats the state variables and
the nonlinear functions of the state variables on an equal footing, while the latter
are not considered relevant variables in the theory of statistical thermodynamics.
As a consequence of this and the nonlinearities, however, the Fokker-Planck approach
does not yield directly closed equations of motion for the mean values and the cor-
relation functions of the state variables. These have to be determined by what is
now commonly referred to as a renormalization. By renormalizing the Fokker-Planck
process one obtains renormalized tramsport laws with retarded transport kernels of
the same type as those met within generalized statistical thermodynamics, but the
transport kernels’are in fact approximated since non-Markovian effects are not in-
cluded in the Fokker-Planck equation.>2

The renormalized transport laws derived from the Fokker-Planck equation or a set
of stochastically equivalent nonlinear Langevin equations [44- 46] lie between sta-
tistical thermodynamics and generalized statistical thermodynamics (Fig.1.1); they
do contain the major corrections to statistical thermodynamics though. Mostly,
authors have looked for renormalized transport equations in the linearized form in
order to determine equilibrium ccrrelation functions [38-42,47,48]. This is the
approach which has been so successful in explaining the dynamical behavior in the
vicinity of equilibrium phase transitions [4,49-51]. In the study of nonequilibrium
systems, however, the renormalized transport laws become nonlinear {53-55].

Particularly in systems where quantal effects are important, it may be neces-
sary to take into account the fact that the macroscopic variables can take on values
out of a discrete set only. The Fokker-Planck equation is then replaced by a quantum-

2 To distinguish the two kinds of renormalized transport equations one could call
those derived from the Fokker-Planck equation "fluctuation renormalized" and those
met within the theory of generalized statistical thermodynamics "fully renor-
malized".
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mechanical master equation.3 This approach traces back to PAULI [59], was improved
Tater by VAN HOVE [60], PRIGOGINE [61,62], MAKAJIMA [63], ZWAMZIG [64-66], and
others [67-72], and has been reviewed by HAAKE [73] and SPOHN [74]. Very recently,
objections against the standard approach have been raised on the basis of fundamen-
tal considerations [75,76]. To cope with these, we have found it necessary to aban-
don the usual factorization assumptions [73,74] and to bring the master equation
into the form of a transport equation. This form has not been used so far. The
master equation approach may then be developed in close analogy with the Fokker-
Planck equation approach.

The various macroscopic evolution laws and their mutual dependence are depicted
schematically in Fig.1.1. The hierarchical character is apparent in the one-way
connections which either lead downwards to a theory that has more microscopic de-
tails left out, or rightwards to a theory that has more approximations built in.
Clearly, the scheme in Fig.1.1 is not complete since there are further levels of
description lying between a fully microscopic treatment and the level of nonlinear
Markov processes, that is, between level A and B in Fig.1.1.

The usual Fokker-Planck description is not appropriate for a study of phenomena
occuring on a length or time scale close to a microscopic scale. One must then
either take non-Markovian effects into account {77,78] or utilize a more microscopic
method (e.g., a #oltanwwm equation approach [78-811). Although this approach may
also be analyzed in a language very similar to one given here, a discussion of it
would be beyond the scope of this article. This is because the closer one approaches
the microscopic level, less universal the findings are, and because different physi-
cal systems require different treatment. We shall concentrate on the structural as-
pects of the macroscopic theory of many-body systems and, in particular, on those
aspects that are independent of a specific model.

Moreover, we shall not discuss the field of nonequilibrium instabilities [46,70,
82-85] which has received so much attention recently. In general, these phenomena
do not demand statistical-mechanical techniques different from those treated in
this article; rather one starts from the equations of motion derived here. Often,

a complete macroscopic description of a nonequilibrium system requires a large set
of macroscopic variables, particularly in inhomogeneous systems, where the macro-
scopic variables are local variables. In the vicinity of a nonequilibrium instabi-
lity, however, the set of relevant variables can greatly be reduced because a sep-
aration of time scales between the "stable" and the "unstable" modes occurs. Indeed,
HAKEN [85,86] eliminates the stable modes and derives a close subdynamics for the
unstable modes only. While this second coarse graining can partly be performed by

3 Clearly, there are also classical systems which can approximately be described by
master equations. In particular, well-stirred ideal mixtures undergoing chemical
reactions have frequently been studied [56-58]. Most of the fundamental questions
raised by quantal master equations are not present in the classical case.
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means of the techniques developed here for the first coarse graining, it is impor-
tant to notice that the effective evolution equations for the unstable -modes do not
necessarily share the features that cur equations of motion possess.

In practice, macroscopic phenomena are frequently studied by means of phenomeno-
logical methods. Indeed, from phenomenological considerations one often obtains a
set of deterministic equations of motion for the macroscopic variables (e.g.,
[871). The question of how to account for fluctuations thus arises. In particular,
in the interesting case of nonlinear systems, this problem of stochastic modeling
has extensively been discussed in the Titerature. Recently, some proposals have been
critically investigated by HANGGI [88]. Considerations on the basis of statistical-
mechanical arguments show that, at least for continuous processes, the stochastic
description by means of a Fokker-Planck equation can be reconstructed from the
limiting deterministic laws [89,90]. Some macroscopic theories discussed in this
article can, hence, also be approached from the phenomenological point of view
(Fig.1.1). For a recent review of the phenomenological approach see [91].

The outiine of this article is the following. The paper is divided into two parts,
A and B, each of which has several chapters. Each chapter opens with a brief sum-
mary of its content. While the material is presented in a systematic way, all chap-
ters after Chap.3 are to a large extent self-contained. This made it necessary to
repeat occasionally an argument already given in a previous chapter, but it certain-
1y facilitates the use of the article as a source of reference for the various ap-
proaches discussed in it. A general idea about the organization of the article can
also be obtained by glancing at Fig.1.1 and its caption.

part A is devoted to the derivation of macroscopic evolution equations starting
from a microscopic theory. To this purpose we makeluse of the projection operator
techmique which has been introduced into statistical physics by NAKAJIMA [63] and
ZWANZIG [64]. In particular ZWANZIG [43,65,66,92] developed the technique into a
powerful tool for the derivation of formally exact equations of motion for classi-
cal or quantal probability densities. Later MORI [20] put forward a projection
operator technigue in the Heisenberg picture, which leads to generalized linear
Langevin equations. Both approaches have been reviewed by HYNES and DEUTSCH [93].
Using an extended time-dependent projection operator technique, ROBERTSON [23] was
able to derive closed nonlinear equations for mean values. This approach was sup-
plemented later by the author [26], who derived exact evolution equations for the
fluctuations about the mean. The latter technique can be shown to cover the pre-
vious ones.

Since most of the specialized applications of the projection operator technique
are best appreciated when the central elements of this method have been understood,
we reserve Chap.2 for a detailed presentation of the basic ideas and the general
scheme. The presentation is more general than is needed for the following chapters,
but the characteristics thus become particularly clear, and the approach also covers
applications not explicitly discussed here [81,94,95].



In Chaps.3, 4, and 5, we then app]y‘the technique to derive the various types of
macroscopic evolution equations mentioned above. Holecular expressions for the quan-
tities entering the transport laws are derived, and general properties and symme-
tries of these quantities are proved. We further discuss the mutual connections be-
tween the different equations of motion. In Chap.6 we study the response of the
system to an applied time-dependent perturbation, both from a microscopic and macro-
scopic point of view. We show how the macroscopic evolution equations are modified
by the external perturbation and emphasize the connection with the preceding results.

Part B contains some select applications of the general formalism which are in-
tended to illustrate the methods discussed in Part A. Chapter 7 is concerned with
the statistical-mechanical theory of a classical nonlinear oscillator in interaction
with a heat bath. -This investigation is based on the Fokker-Planck equation approéch.
The special cases of a Brownian particle in a fluid and a mass impurity in a har-
monic lattice are discussed in some detail, and the renormalization of transport
equations is illustrated by using the Duffing oscillator as an exampie.

In Chap.8, statistical thermodynamics is applied to simple classical fluids. We
start out from general considerations of systems described by local densities and
derive exact equations of motion for the hydromechanic modes. The nonlinear Navier-
Stokes equations are recovered in an approximation. Langevin equations for the
spontaneous fluctuations are obtained and used to calculate the structure factor
for light scattering in the presence of a steady temperature gradient. In Chap.9,
we discuss spin relaxation using the master equation approach. The master equation
for the coarse-grained spin probabi]iFy density and the Bloch equations for the
mean spin relaxation are derived. Finally, we determine the linear response to an
alternating applied magnetic field.

While the present article is based on the projection operator technique, it is
not intended to give a comprehensive review of all recent developments related to
pkojector methods, nor is an extensive or even complete list of literature provided.
The emphasis is on a coherent presentation of those methods which have proved to
be particularly powerful tools for the development of a statistical-mechanical
foundation of irreversible processes in many-body systems.
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Part A. General Theory

2. The Projection Operator Technique

In this chapter we present the basic ideas and the general scheme of the projection
operator technique.! We show how the meéthod extracts exact equations of motion for
a few macroscopic variables from the microscopic process involving all variables

of the system.

The foundations of the method are formed by the particular structure of the
microscopic dynamics governed by a Hamiltonian and by the concept of the relevant
probability density. The important properties of the microscopic dynamics, as far
as we shall need them, are recapitulated in Sect.2.1. On the macroscopic level the
system is described by a set of macroscopic variables. The ability to choose the
appropriate set for a given problem is where physical insight is required. For a
given set of macroscopic variables we introduce a relevant probability density
which is macroscopically equivalent to the full microscopic probability density.
Section 2.2 summarizes the basic properties of a relevant probability density,
while its particular form is left open during the general considerations of this
part of the article.

As soon as the set of macroscopic variables and the relevant probability density
have been fixed on the basis of physﬁcal arguments, the continuation of the projec-
tion operator method is determined by a mathematical elimination procedure remcving
the microscopic variables from the equations of motion. First, in Sect.2.3 we in-
troduce a projection operator acting in the space of all variables and projecting
out the macroscopic variables. The form of this projection operator is specified in
terms of the relevant probability density. In Sect.2.4 we come to the fundamental
mathematical identity. The microscopic time evolution operator is decomposed with
the help of the projection operator into a sum of three terms, where the first term
is completely determined by the instantaneous values of the macroscopic variables,
the second term by their past history, and the third term is of microscopic origin
leading to the irregular motion of macroscopic quantities.

The fundamental identity is used in Sect.2.5 to derive the generalized transport
equations. They form an exact closed system of integro-differential equations for

1 We essentially follow [26].
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the mean values of the macroscopic variables. In these equations the microscopic
variables are eliminated completely in favor of after-effect functions describing
a retarded interaction among the macroscopic variables.

In Sect.2.6 we derive the generalized Langevin equations describing the dynamics
of fluctuations about the mean path. The Langevin equations are nonstationary if
the mean values depend on time. The fluctuations of the macroscopic variables are
driven by random forces, the stochastics of which depends on the mean path. Section

2.7 contains some concluding, as well as additional, remarks on the projection
operator technique.

2.1 Microscopic Dynamics

Statistical-mechanical theory relates the macroscopic dynamics of a large system
composed of great numbers of identical constituents with the underlying micro-
scopic or molecular process. Clearly, the microscopic process is very complex in
detail, and the laws governing this process might be known only approximately since
we do not always know the molecular constituents of a system and their mutual
interactions precisely. On the other hand, the microscopic process has simple for-
mal properties: it is a special Markovian process which is completely determined
by the Hamiltonian of the system and the initial probability density. These formal
properties of the microscopic process lead to a definite structure of the macro-
scopic dynamics. In this section we summarize some of the general properties of
microscobic processes.

The microscopic dynamics determines the time evolution of a microscopic state
of the system in a unique, deterministic way. However, by macroscopic observation
or measurements we obtain only incomplete information about the microscopic state
of a macroscopic system. We have to consider an ensemble of identica]lsystems which
have been under the influence of identical external conditions (identical prepar-
ation of the initial state) and ask for the ensemble probability of events. In prac-
tice, an ensemble of systems can also be formed by repeating the same process very
often with the same system, or, in the case of stationary processes, by measuring
for a sufficiently long time.

An ensemble of systems is described by a probability density p. In classical-
statistical mechanics p is a distribution function in the phase space ¢, while
for quantum-mechanical systems p is an operator? acting in the Hilbert space H. In
the following we shall often suppress the ensemble point of view and call o the
microscopic probability of the system. The probability density p is positive

2 In quantum-statistical mechanics p is also referred to as the density matrix or
statistical operator. .



