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Introduction

In February 1981, the classification of the finite simple groups (D1)* was
completed,” * representing one of the most remarkable achievements in the
history or mathematics. Involving the combined efforts of several hundred
mathematicians from around the world over a period of 30 years, the full
proof covered something between 5,000 and 10,000 journal pages, spread
over 300 to 500 individual papers. .

The single result that, more than any other, opened up the field and
foreshadowed the vastness of the full classification proof was the celebrated
theorem of Walter Feit and John Thompson in 1962, which stated that
every finite group of odd order (D2) is solvable (D3)—a statement expressi-
ble in a single line, yet its proof required a full 255-page issue of the Pacific
Journal of Mathematics [93].

Soon thereafter, in 1965, came the first new sporadic simple group in
over 100 years, the Zvonimir Janko group J,, to further stimulate the

*To make the book as self-contained as possible, we are including definitions of various terms
as they occur in the text. However, in order not to disrupt the continuity of the discussion, we
have placed them at the end of the Introduction. We denote these definitions by (D1), (D2),
(D3), etc.

The classification theorem asserts that an arbitrary finite simple group is necessarily isomor-
phic to one of the groups on a specified list of simple groups. (See Section 2.11 for the detailed
list.)

*The final mathematical step of the classification was carried out by Simon Norton of the
University of Cambridge, in England, establishing the “uniqueness™ of the Fischer-Griess
sporadic simple group F,. Griess had earlier constructed F, in terms of complex matrices of
degree 196,883. Moreover, Thompson had shown that there existed at most one simple group
of “type F," which could be so represented by complex matrices of this degree. What Norton
did was to prove that any group of type F, could, in fact, be represented by such matrices. (All
these results are described more fully in Section 2.10.)

We also note that as of February 1981 several manuscripts (including Norton’s) concerning
the classification were still in preparation.



2 Introduction

interest of the mathematical community in finite simple groups [187]. The
sporadic groups acquired their name because they are not members of any
infinite family of finite simple groups. Emile Mathieu, ‘in 1861, had dis-
covered five such groups [210-212], yet J, remained undetected for a full
century, despite the fact that it has only 175,560 elements (a very smali
number by the standards of simple group theory). Then in rapid succession
over the next ten years, 20 more sporadic groups were discovered, the
largest of these the group F, of Bernd Fischer and Robert Griess (recently
constructed by Griess [152]) of order 808, 017, 424, 794, 512, 875, 886, 459,
904, 961, 710, 757, 005, 754, 268, 000, 000, 000 (approximately 10°4), and
because of its size, originally dubbed the “monster.” An additional intrigu-
ing aspect of these new sporadic groups is the fact that several have
depended upon computer calculations for their construction.

The pioneer in the field was Richard Brauer, who began to study
simple groups in the late 1940s. He was the first to see the intimate and
fundamental relationship between the structure of a group and the central-
izers (D4) of its involutions (clements-of order 2; DS5), obtaining both
quantitative and qualitative connections. As an example of the first, he
showed that there are a finite number of simple groups with a specified
centralizer of an involution [46]. As an example of the second, he proved
that if the centralizer of an involution in a simple group G is isomorphic to
the general linear group GL(2, q) (D6) over the finite field with ¢ elements,
q odd, then either G is isomorphic to the three-dimensional projective
special linear group L,(g) (D7). or else g=3 and G is isomorphic to the
smallest Mathieu group M,, of order 8-9-10-11 [40, 42]. This last result,
which Brauer announced in his address at the International Congress of
Mathematicians in Amsterdam in 1954, represented the starting point for
the classification of simple groups in terms of the structure of the central-
izers of involutions. Moreover, it foreshadowed the fascinating fact that
conclusions of general classification theorems would necessarily include
sporadic simple groups as exceptional cases.

In the early years, Brauer had been essentially a lone figure working on
simple groups, although Claude Chevalley’s seminal paper of 1955 on the
finite groups of Lie type [66] had considerable impact on the field. By the
late 1950s two disciples of Brauer, Michio Suzuki and Feit, had joined
the battle. However, it was the Feit-Thompson theorem that provided the
primary impetus for the great expansion of the study of simple groups. The
field literally exploded in the 1960s, with a large number of talented young
mathematicians attracted to the subject, primarily in the United States,
England, Germany, and Japan. For the next fifteen years, the papers came
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pouring out—long, long papers: Thompson’s classification of minimal sim-
ple groups (i.e., simple groups in which all proper subgroups are solvable),
410 pages in six parts, the first appearing in 1968 and “he last in 1974 [289];
John Walter’s classification of simple groups with abelian Sylow 2-subgroups,
109 pages of the Annals of Mathematics in 1969 [314]; the Alperin—Brauer—
Gorenstein classification of simple groups with quasi-dihedral or wreathed
Sylow 2-subgroups (see D7), 261 pages of the Transactions of the American
Mathematical Society in 1970 [3]; the Gorenstein—Harada classification of
simple groups whose 2-subgroups are generated bv at most 4 elements, a
461-page Memoir of the American Mathematical Society in 1971 [136], to
name but a few. Even near the end, we find Michael Aschbacher’s funda-
mental “classical involution” theorem, 115 pages of the Annals of Mathe-
matics in 1977 [13].

Furthermore, the search for new simple groups was keeping pace with
this effort, with a discovery rate of roughly one par year. The phenomenon
can be compared with elementary particle theory, in which one must scan a
large horizon with the aid of one’s intuition and theoretical knowledge in
the hope of distinguishing a new particle. If Janko's group J; has been
constructed from the centralizer of one of its involutions [isomorphic to
Z,X L,(4)], then examine other likely candidates as potential centralizers of
involutions in a new simple group. If Janko’s second group J, turns out to
be a transitive rank 3 permutation group (D8), conduct a more general
investigation of such permutation groups. If the automorphism group of the
remarkable 24-dimensional Euclidean lattice of John Leech yields Jokn
Conway’s three simple groups .1,.2..3, then look for other integral Euclidean
lattices that may have a “large” automorphism group. Any plausibie direc-
tion is worth considering; just keep in mind that the probability of success is
very low. In the end, several sporadic groups were discovered by both the
centralizer-of-involution and rank 3 permutation group approach, but un-
fortunately the study of integral lattices yielded no further new groups.

Another aspect of sporadic group theory makes the analogy with
elementary particle theory even more apt. In a number of cases (primarily
but not exclusively those in which computer calculations were ultimately
required), “discovery” did not include the actual construction of a group—all
that was established was strong evidence for the existence of a simple group
G satisfying some specified set of conditions X. The operative metamathe-
matical principle is this: if the investigation of an arbitrary group G having
property X does not lead to a contradiction but rather to a “compatible”
internal subgroup structure, then there exists an actual group with property
X. In ali cases, the principle has been vindicated; however, the interval
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between discovery and construction has varied from a few months to several
years. Although the major credit has usually gone to the initial discoverer,
existence and uniqueness were often established by others, or at least with
someone else’s assistance.

The excitement generated by the discovery (and construction) of these
new simple groups was intense. Moreover, there was a long period in which
it was felt that there might well exist infinitely many sporadic groups (from
the point of view of classification at least, this was a disturbing thought,
- since this possibility would very likely have precluded the achievement of a
complete classification of simple groups. A certain haphazard, almost
random quality accompanied the search; some of the groups seemed liter-
ally plucked from thin air. I have always felt great admiration for the
remarkable intuition of these indefatigable explorers.

It is essential to distinguish between the notion of discovery (including
construction) and classification. One can search for a new simple group in
any direction, and discovery is its own reward, requiring no further theoreti-
cal justification. However, in contrast, the solution of a general classification
problem must be systematic and all-inclusive—every simple group with the
specified property must be determined. In particular, the analysis must
uncover every sporadic group satisfying the given conditions, previously
discovered or not. For example, Fischer’s first three sporadic groups, M(22),
M(23), and M(24), were discovered and constructed in the process of
proving just such a classification theorem [97, 98]. Likewise, some years
earlier, Suzuki’s exceptional family of groups of Lie type of characteristic 2
was discovered in the process of classifying groups in which the centralizer
of every involution has order a power of 2 [276, 278].

Whatever one’s attitude toward the possible number of sporadic groups,
1t was certainly true that a complete classification of the finite simple groups
was regarded at that time as very remote, for the steady stream of develop-
ments was producing as much turmoil as light. The chaotic state of affairs
was well expressed in the verses of a song entitled “A Simple Song” (to be
sung to the tune of “Sweet Betsy from Pike”)), published in the American
Mathematical Monthly (1973, p. 1028), and summed up in its final stanza:

No «oubt you noted the last lines don’t rhyme.
Well, that is, quite simply, a sign of the time.

There’s chaos, not order, among simple groups;
And maybe we'd better go back to the loops.

I believe I have the distinction of being the original optimist regarding
a possible classification of the simple groups. Even as early as 1968, in the
final section of my book Finite Groups [130], I had placed great emphasis on
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Thompson’s classification of minimal simple grcups, a magnificent result in
which Thompson showed the fundamental significance of the “local” meth-
ods of the odd-order paper for the study of simple groups. In my comments,
I suggested that his techniques might well be applicable to much broader
classification problems. Over the next few years my thoughts in this
direction continued to evolve, and gradually I developed a global picture of
how it might be possible to carry through a complete classification. At J. L.
Alperin’s urging, I presented these ideas at a group theory.conference at the
University of Chicago in 1972, and in four lectures I laid out a sixteen-step
program for classifying the finite simple groups [132; Appendix]. The
program was met with considerable skepticism. I doubt that I made any
converts at that time—the pessimists were still strongly in the ascendancy.

However, in the next few years substantial progress was made on some
of the individual portions of the program: the complete classification of
“nonconnected” simple groups, the first inroads into the ‘“B-conjecture,”
and a deeper understanding of the structure of centralizers of involutions in
groups of “component” type. Aschbacher, who had entered the field during
this period, came on now like a whirlwind, moving directly to a leadership
position and sweeping aside all obstacles, as he proved one astonishing
result after another. Within five years, the program, which at its formulation
had been a far-off dream, began to take on a sense of immediacy, with
genuine prospects for fulfillment.

Hardly surprisingly, individual steps of the program had to be modified
along the way—in 1972, the key notions of “tightly embedded subgroup,”
“Aschbacher block,” and George Glauberman’s entire theory of “pushing
up” had not even existed. In addition, the program overemphasized the role
of the prime 3 in the analysis of groups of “characteristic 2 type.” But more
significantly, in 1972 I had not appreciated the far-reaching impact that
Fischer’s “internal geometric” approach wouid have for the study of simple
groups. Despite these shortcomings, the overall program remained largely
intact, so that at all times we had a way of measuring the extent of our
achievements and could describe quite accurately the steps remaining to
complete the classification.

The turning point undoubtedly occurred at the 1976 summer con-
ference in Duluth, Minnesota. The theorems presented there were so strong
that the audience was unable to avoid the conclusion that the full classifica-
tion could not be far off. From that point on, the practicing finite group
theoridts became increasingly convinced that the “end was near” —at first
within five years, then within two years, and finally momentarily. Residual
skepticism was confined largely to the general mathematical community,
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which quite reasonably would not accept at face value the assertion that the
classification theorem was “almost proved.”

But the classification of the finite simple groups is not an ordinary
theorem: it makes more sense to think of it as an entire field of mathe-
matics, in which by some accident the central questions become incorpo-
rated into the statement of a single theorem. Indeed, as in any other broad
field of mathematics, later results depend upon earlier theorems. Thus, all
the major results after 1963 depend crucially upon the solvability of groups
of odd order, and ncone provides an alternate proof. As one can well
imagine, the logical interconnections between the several hundred papers
making up the classification proof are often very subtle, and it is no easy
task to present 2 completely detailed flow diagram.

Because of the excessive lengths of the papers and the specialized
techniques developed for the study of simple groups, the classification proof
has remained quite inaccessible to non-finite group theorists. Not because
of lack of interest: indeed, many mathematicians have followed the develop-
ments rather closely, especially those related to the sporadic‘groups and the
groups of Lie type. But very few have managed to penetrate beneath these
“boundary” aspects of the subject to the core of the classification proof.
Even within the field, many finite group theorists, working in a specialized
area of the subject, have had similar difficulties developing a global picture
of the full classification proof.

1 hope that this detailed outline of the classification theorem will
represent a first step toward correcting this situation by illuminating the
broad features of the subject of simple groups—the known simple groups
themselves, the techniques underlying the classification, and the major
components of the classification proof.

The concept of a group is so central to mathematics, it is difficult to
imagine that ideas that have been so fruitful for the study of simple groups
will find no further mathematical applicability. The “signalizer functor”
theorem, the “classical involution™ theorem, the “B-property” of finite
groups, the “root involution” theorem, the “C(G:T)” theorem—to name
but a few of the basic results—have such conceptually natural statements,
one would certainly hope that analogues of at least some of these theorems
exist for some families of rings or algebras. Thus, I have had in mind the
subsidiary objective of enabling (primarily) algebraists, number theorists,
and geometers to consider the central ideas of finite simple group theory in
relation to their own fields.

Although this book is clearly aimed at a mathematical audience,
portions of it should be of interest to physicists, crystallographers, and
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perhaps other theoretical scientists as well-—especially the descriptions of
the known finite simple groups: the construction of the groups of Lie type
from their associated Lie algebras, the origins and definitions of each of the
sporadic groups, the list of orders of the known simple groups, many of
their basic properties, eic.

For expository purposes it has seemed best to split the totai endeavor
into two parts. In this book we present a global picture of the classification
proof (Chapter 1), a detailed description of the known simple groups,
including the sporadic groups (Chapters 2, 3), and a long discussion of the
major techniques underlying the proof of the classification theorem (Chapter
4). Its contents represent an updated and considerably expanded version of
an article written for the Brauver memorial issue of the Bulletin of the
American Mathematical Society, published in January 1979 {132].

We hope that the material covered here, which can be regarded as
preparatory to the classification proof itself, will stimulate the reader to
pursue the more detailed outline, which will form the contents of two
further books. However, by itself, this book should provide the reader with
considerable insight into simple group theory: in particular, an overall
picture of the fundamental four-part subdivision of the classification proof,
the group-theoretic origins and definitions of each of the known simple
groups, and a good feeling for the methods that have been developed for the
study of simple groups.

I have attempted to make the book as self-contained as reasonably
possible, so that it will be accessible tc anyone with a sound mathematical
background and a modest knowledge of abstract algebra. In particular, I
have included the definition of essentially every term used in the text (even
such basic notions as simple group and Sylow’s theorem). Furthermore,
even though the organizational structure follows a precise logical pattern, I
have tried to make the individual sections more or less independent, so that
a selective reading of the text is possible. Moreover, I have included only a
few proofs (and outlines of proofs); these have been selected either because
of the intrinsic importance of the resuit or as illustrations of a group-theoretic
technique in action. However, I do not mean to imply that the book will
necessarily make easy reading, for finite simple group theory involves many
deep and difficult concepts whose applicability is often very elaborate.

There is one aspect of the classification “proof” that we must mention
before concluding this introduction. Indeed, many of the papers on simple
groups are known to contain a considerable number of “local” errors. The
fact that it seems beyond human capacity to present a closely reasoned
argument of several hundred pages with absolute accuracy may provide the
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explanation, but this explanation does not eliminate doubt concerning the
validity of the proof. Most of these errors, when uncovered, can be fixed up
“on the spot.” But many of the arguments are ad hoc, so how can one be
certain that the “sieve” has not let slip a configuration leading to yet
another simple group? The prevailing opinion among finite group theorists
is that the overall proof i$§ accurate and that with so many individuals
working on simple groups during the past fifteen years, often from such
differing perspectives, every significant configuration has loomed into view
sufficiently often and could not have been overlooked.

However, clearly the first task of the post-classification era must
involve a reexamination of the proof to eliminate these local errors. That
reexamination will have two other objectives as well. First, because the full
proof evolved over a thirty-year period, some of the early papers were
written without the benefit of subsequent developments. Second, because of
the lengths of most of the major papers, prior results were usually quoted
wherever possible, even when a slight additional argument might have
avoided a particular reference.

Thus the local errors will inost likely be corrected as part of ihe broader
task of “revising” the existing classification proof in an attempt to discover
its “essential” core. Helmut Bender actually began this effort ten years ago,
making significant simplifications in the local group-theoretic portions of
the odd-order paper [28]. The “Bender method,” as his approach came to be
called, subsequently developed into a standard technique, finding applica-
tion in several classification problems (see Sections 4.3, 4.8). But only very
recently, with the full classification proof nearly in view, have finite group
theorists begun to systematically consider a global reexamination.

The outline I shall present is meant to be a historical summary of the
original classification proof. Thus, apart from Bender’s work, which has
already become an integral part of the proof, I shall avoid discussion in the
body of the text of any recently achieved revisions. In the final chapter of
the sequel, I shall briefly describe some of the revisionist game plans for
improving the classification proof.

Finally, except for a few passing remarks, I shall not discuss the
remarkable, recently discovered connections between the Fischer—Griess
group F, and classical elliptic function theory. These connections have their
origin in the serendipitous observation of John McKay that the coefficient
of ¢ in the expansion at infinity of the elliptic modular function J(q)
is 196,384, while the minimal degree of a faithful irreducible complex
representation of F, is 196,883. Although considerable “numerological”
interconnections have since been uncovered [70, 195, 298], the deeper
explanation of this relationship remains a mystery. However, because ap-
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proximately 20 of the 26 sporadic groups are embedded one way or the
other in F), there is a distinct possibility that there may ultimately exist a
unified, coherent description of most of the sporadic groups. Although these
developments are not needed for the classification theorem per se, they do
indicate that an interest in the finite simple groups will persist long after the
classification.

Definitions for the Introduction

D1. A group G is simple if its only normal subgroups are the entire group G and the trivial
subgroup consisting of the identity element | of G. In general, a subgroup X of a group G is
normal if g~ 'xg € X for every x € X and g€ G. When this is the case, the set of (right) cosets of
X in G form a group, called the factor or quotient group of G by X and denoted by G/ X.
Multiplication in G/ X is given by the rule (Xg)-(Xg")= X(gg’) for g, g’ €G. Here, for a given
gE G, the coset Xg denotes the set of elements xg with x ranging over X. The mapping ¢: g— Xg
is a homomorphism of G onto G/ X. Every homomorphic image of G is easily shown to arise in
this fashion. Thus a group G is simple if and cnly if its only homomorphic images are itself and
the trivial group.

D2. The order of a group is the number of its elements.

D3. A group is solvable if it possesses a normal series with abelian (i.e., commutative)
factors. A normal series of a group G is - chain of subgroups G=G,,G,,...,G,=1 with each G,
normal in G;_,, 2<i<n. The quotient groups G,_,/G, are called the facrors of the series.

D4. The centralizer of a subset X of a group is the set of elements of G that commute
elementwise with X, i.e.., the set of g€ G such that g~ 'xg=x for all x € X. The center of G is the
set of elements of G whose centralizer is G itself—i.e., the set of x € G that commute with every
element of G.

DS5. The order of an element x of a group G is the order of the c¢yclic subgroup that it
generates, i.e., the subgroup {x'li€Z}.

D6. GL(n, q) is the group of all nonsingular n X n matrices with entries in the finite field
GF(q) with g elements. It has a normal subgroup SL(n, q). the special linear group, consisting
of those matrices of determinant 1. The factor group of SL(n, g) by its subgroup of scalar
matrices (of determinant 1) is the projective special linear group and is denoted by both
PSL(n,q) and L,(q). It is known to be simple when n=3 or n =2 and ¢ = 4.

D7. A 2-group S is quasi-dihedral if S is generated by elements x, y subject to the relations

o n-1 . . .
12 n=3; and S is wreathed if S is generated by elements x, y, z.
o

" _
xI=yp¥=1x" =y

subject to the relations x2"= y 2= ~1

=z vxp=px 2z xz=p, 2" e =x, 0= 2.

D8. The group of all permutations of a (finite) set @ (i.e., one-to-one transformations of
onto itself) under the natural operation of composition is called the symmerric group on €. Any
subgroup X of the symmetric group is called a permutation group {on ). The cardinality of  is
called the degree of X. X is k-fold transitive on Q if any two ordered k-tuples of distinct
elements of £ can be transformed into each other by an element of X. One writes transitive,
doubly transitive, triply transitive. etc., for 1-fold, 2-fold, 3-fold transitive, etc. X has (permuta-
tion) rank r if X is transitive on £ and the subgroup of X fixing a point of & has exactly r orbits
on §. Thus double transitivity is equivalent to permutation rank 2.






Local Analysis and the Four Phases
of the Classification

1.1. From Character Theory to Local Analysis

It seems best to begin with an explanation of the historical origins and
general meaning of the primary underlying method of the classification
proof: local group-theoretic analysis. This was not always the principal
approach to the study of simple groups, for Brauer’s methods were almost
entirely representation- and character-theoretic (D1).* In the middle 1930s he
had introduced and developed the concept of modular characters (see D1) of
a finite group. He soon realized the power of these ideas, which played an
instrumental role in his proof of a conjecture of Artin on L-series in
algebraic number fields, and he saw how they could be applied to obtain
deep results concerning the structure of simple groups.” From the middle
1940s until his death, Brauer systematically developed the general theory of
modular characters and blocks of irreducible characters (D2), with increas-
ingly significant applications to simple group theory.

These methods were especially suited for investigating “small” simple
groups: complex linear groups of transformations of low dimension, alter-
nating groups of low degree (D3), groups with very restricted Sylow
2-subgroups [e.g., quaternion, dihedral. quasi-dihedral, wreathed, abelian,
etc. (D4)]. This was certainly fortunate, since at the outset of the study of
simple groups, it was obviously most natural to focus on the smallest ones.

*Again we include some definitions, denoted (D1), (D2). etc., which we have placed at the end
of the section (see the footnote on page 1). We follow the same procedure in Sections 1.2 and

.3,

" Throughout the text the term simple group will always refer to a nonabelian simple group.

11



2 Chapter 1

Indeed, the methods were so effective that in the early years there was a
strong conviction that character theory would remain a principal tool—
perhaps even rhe most essential—for investigating simple groups (even
though it was also recognized that larger-rank situations would involve
considerable computational difficulties).

However, even in treating small groups, the method had drawbacks, for
the way it worked was this: if one had rather precise information about the
structure of some subgroup H of G (such as the centralizer of an involution),
one could relate the characters of H to those of G and use this connection to
obtain conclusions about the structure of G. This was the thrust of the
Brauer method.

The difficulties arise if one asks a broad enough question, for then one
cannot assert a priori that any critical subgroup H of G has a restricted
shape. I should like to illustrate this point by considering a specific
classification problem, namely, the determination of all simple groups G of
order pq”r¢, p, q, r primes with p < g <r. In view of the classical Burnside
theorem that all groups of order p“q® are solvable [see Theorem 4.130], this
is a problem of natural interest. Among the known simple groups, there are
exactly eight whose orders have this form (see D5):

A, Ag, Ly(7), L,(8), L,(17). Ly(3), Uy(3). and U,(2).

Each of these can certainly be considered to be a “small” group (the largest
order is, in fact, 25,920). (Note that in these groups p=2, ¢=3, and r=35, 7,
13, or 17))

The obvious conjecture is that an arbitrary simple group of order
p“q”r< is necessarily isomorphic to one of these eight groups.

For brevity, let us call these eight groups K;-groups and an arbitrary
group of order pg®r¢ a ( p, g, r)-group, so that our conjecture assumes the
form:

A simple (p.q, r)-group is necessarily a Ky-group.

Of course, until shown otherwise, our conjecture may be false. As in
every general classification problem, it is therefore natural to focus attention
on a minimal counterexample G to the conjecture, i.e., a simpie ( p,q,r)-
group G of least order which is not a K;-group. Clearly, to establish the
conjecture, we must show that no such group G exists—equivalently, that G
must, in fact, be a K;-group. The advantage of considering a minimal
counterexample is that if A is any proper subgroup of G, then the
(nonsolvable) composition factors of H (D6) are simple ( p, q. r)-groups of



