INC.

1985

FORTH NOTEBOOK

OFFETE ENTERPRISES, INC.

1985

(c) Copyright, 1983 by C. H. Ting

FIRST EDITION, SEPTEMBER 1983 (FIRST PRINTING)

MAY 1985 (SECOND PRINTING)

L2222 222222222222 2222222222222 22222222222 22222 X2 2 2 R £

All rights reserved. This book, or any part thereof, may not
be reproduced for commercial usages without written permission
from the Author.

KRR KRR KRR R R KRR AR R AR AR AR R AR AR KRR AR KRR AR KRR R AR R R RN AR AR AR AR AR AR Ak k&

Printed in the United States of America

by

Offete Enterprises. Tuc.

1306 SOUTH ‘B* STREET
SAN MATEO, CALIFORNIA 94402
TEL: (416) 6748260

PREFACE

My experience in the last few year in teaching FORTH to
people of different backgrounds was that Starting FORTH was
quite sufficient as a textbook, introducinag people to the basics
of FORTH. However, to more experienced programmers, the
materials in it are not enough. Though there are numerous
examples and exercises, most of them are brief and the scope
of the examples is also limited. I was constantly asked
to provide real applications besides teaching examples.

Another shortcoming is that it does not deal with the internals
of the FORTH operations at the machine code level. There is

a wide gap between Starting FORTH and the source code as

shown in the fig-FORTH Model and Installation Manual.

We've seen a number of books on FORTH appearing in the last
year. They are welcome news. However, most of them did not
exceed Starting FORTH either in the scope of their treatments
or in the amount of examples towards more realistic applica-
tions. Starting FORTH probably will remain the bible
of FORTH to beginners for many years to come.

There are two areas where FORTH books are of urgent need:
one is in presenting program design with examples of moderate
complexity, and the other is to explore the FORTH computer in
a deeper level, dealing with real CPU's and instruction sets.
What I wanted to present in this Notebook are some of my
personal efforts in these two directions.

In this Notebook, I collected many programs which I used for
teaching purposes. Many interesting games were translated from
BASIC into FORTH. These translations offer some insight into
the natures of these two different languages. I am very
interested in the computerization of the ancient oriental GO
game. A few programs in this field are included. My profession
requires the utilization of digital image processors. A number
of programs dealing different aspects of image processing were
used to demonstrate that FORTH is a more natural language for
this type of applications. I included them here as working
examples of practical applications. They are of very limited
use to people who do not have the same image processor as mine.
Nevertheless, they do illustrate many commonly used techniques
in handling digital images.

Recently, I was involved in a bit slice microprocessor
project and developed a microassembler to assemble microcodes.
It is a very simple solution to a rather compllcgted problem.

I simply connot resist the temtation to publish it here.

Two other programs of similar nature were included for the same
reason. One was developed when I was with Yang Ming Medical
College in Taipei, to identify bacteria according to the results
of a set of tests. Another one was to explore the technique of
continuous Fourier transform I proposed a number of years ago.

I taught a number of short courses on FORTH and used FORTH
screens to prepare viewgraphs. These courses were generally
organized into eight sessions, treating subjects ranging from
data and return stacks to text and inner interpreters.

These viewgraphs are also collected in this Notebook for those
who might want to use them as teaching aids.

In my book Systems Guide to fig-FORTH, I avoided the very
unpleasant task of explaining the nucleus words which were
in 6502 machine codes as published in the f£ig-FORTH Model and
Installation Manual. I worked out these words using PDP-11
codes with some commentary. This section, hopefully, will be a
worthy appendix to the Systems Guide.

I am greatly indebted to the members of the Taiwan FIG
Chapter who encouraged me to put together this Notebook. The
very informal format adopted here was decided when I was
participating in their Summer Workshop, July 21 to 25, 1983.

It is a response to their immediate needs which I believe are
shared by many young FORTH communities. Applications programs
dealing with real world problems sometimes are more interesting
than textbook examples which were designed to sell a viewpoint
or a language.

Thanks are due to Mr. Anson Averell who carefully read
through the manuscript and made numercus suggestions and
corrections.

All the programs presented in this Notebook were fully
debugged as far as I could test them. However, I cannot
guarantee that they are bug-free. Users bewarel! Like all
responsible software maufacturers, this is the proper place to
state that I shall not be liable for errors contained herein
or for the furnishing, performance, or use of the material
contained herein.

San Mateo, California
September, 1983

Chen-hanson Ting

ii

CONTENTS

Preface
Dialectic Variations
Games in FORTH
1. Animal
2. Calendar
3. Depth Charge
4. Game of Life

5. Guess a Number
6. Gunner
7. Hello

The GO Game
1. Coding GO Games
2 GO in FORTH

3. Joseki
4. Gomuko
Tools

Controller Programs
1. PROM Programmer
2 o A/D Converter
3. DMA Interface
4. Robot Control
The Image Processor
1. Image processoring
2. Run Length Coding
3n Connectivity Anylysis
4. A Simple Graphics System
Microassembler
Continuous Fourier Transform
Bacteria Identification
The Virtual FORTH Computer
FORTH Seminar Viewgraphs
1 Advantages of FORTH
2. Introduction to FORTH
3 Programming in FORTH
4. Structured Programming
54 Utilities in FORTH
6. FORTH Virtual Computer
7. FORTH Operating System
8. FORTH Programming Language
Formal Definition of FORTH
Basic—-FORTH
Index

oAU WNDH
] L] L] L] . L] L[] .

(o]
o

11.
12.
13 s
14.
15.
16.
17.
18.

FIGURES

Image Processor Architecture

Image Array Processor in IP5500

Memory Mapped Registers in IP5500
Microcodes of Simple Examples

Partial List of Microcodes of Supersixteen
Partial List of Microcodes of Disk Controller
Comparison of Computer Languages
Extensions of FORTH Computer

Program Development Cycle

Layered Structure of FORTH Computer
Structures in FORTH Language

The Virtual FORTH Computer

Memory Map and Pointers

Instruction Format

High Level and Low Level Instructions

Flow Chart of Text Interpreter

Syntax of FORTH

Software Costs

78

81
144
158
169
212
214
216
217
228
241
243
245
247
250
253
264

DIALECTIC VARIANCES

Almost all the programs presented in this notebook were
written in the earlier version of poly-FORTH, developed by
FORTH, Inc., released in Nov. 1979. Names of many instructions
in this version of FORTH are different from the other dialects
such as fig-FORTH, FORTH-79 Standard, and the latest version of
poly-FORTH, i.e., poly-FORTH II.

For the convenience of readers who are more familiar with
fig-FORTH or FORTH-79, I had prepared a short list on the
variance between these three dialects. This list is by no means
complete nor even exhaustive. It contains only the instructions
I used very often in this Notebook. I felt obliged to warn the
reader of these variances, so that proper modification can be
made upon transporting programs to other FORTH systems.

DIALECTIC VARIANCES

poly-FORTH fig-FORTH FORTH-79

>IN IN >IN

ABORT" xxx" ABORT ABORT

AGAIN REPEAT REPEAT

e AGAIN AGAIN

BLANK BLANKS -

EMPTY COLD COLD

END UNTIL UNTIL

EXIT HES) EXIT
BEGIN-IF-AGAIN BEGIN-WHILE-REPEAT BEGIN-WHILE-REPEAT
FLUSH FLUSH SAVE-BUFFERS
MINUS MINUS NEGATE

DIALECTIC VARIANCES

poly-FORTH fig-FORTH FORTH-79
MOVE CMOVE CMOVE
- STATE STATE
THEN ENDIF THEN
VARIABLE n VARIABLE VARIABLE

WORD (¢ -- addr) WORD (¢ =---) WORD (¢ ==-)
[l] 1 1

PROGRAM TRANSPORTABILITY

Most of the words are common to all FORTH systems and the
FORTH programs are transportable between different systems.
However, care must be exercised because of the differences in
a few words. I would not expect readers to take the programs
and blindly type them in their FORTH computer without looking
at the contents carefully. It is probably better if one would
question the way a word was defined and experiment with
improvements and enhancement. It is alway a pleasure to shave
off a few words in a definition, or to use a different approach
to achieve the same goal while speeding up the execution.

THREE CHARACTER NAMES

Poly-FORTH had been criticized vehemently for retaining
only the first three characters and the character length of
word names. In using this naming convention for a number of
years, I don't feel it is a major limitation as long as I have
the freedom in choosing names. It is not difficult to find
unique names for all the words in an application package.
However, there were occasions that my tongue slipped and
seemingly different names were not identified by the system as
such. Strange things happen depending on the loading sequence
of screens and the weather. Many hours were spent before
realizing that there was a conflict in names. These things were

part of the problems one would have to solve in the debugging
processes.

The only instances that the three character names became
a limitation were when I had to writen programs comforming to
other people's naming schemes. Two examples in this Notebook
fell into this category. In the programs on image processing,
I tried to stick to the naming conventions used by De Anza,
the IP manufacturer. Most register mnemonics were 6 characters
long and the distinguishable characters were often in the
fifth or the sixth character. 1In the microassembler program,
many of the microcode fields definitions and operator mnemonics
were indistinguishable in the first three characters. I had to
doctor these names so that significant charaters were positioned
in the first three charaters, making names not quite natural to
those familiar with the original AMD literature. Only in these
agonizing hours, I missed the 31 charater names in fig-FORTH.

GAMES IN FORTH

A good friend of mine, Mr. Li-wuu Wang, moved to the San
Francisco Bay area from Los Angles. He was looking for a job.
He asked me what he should do in the meantime. His major is
in computer sciences. I suggested to him that he might find
FORTH interesting and useful, and offered him my LSI-11
computer if he wanted to play with this language. After reading
Starting FORTH and working out most of the exercises in the
earlier chapters, he asked me what he should do with this
language. I showed him a book, BASIC COMPUTER GAMES, edited
by David H. Ahl, and asked him if he would translate or rework
some of these games in FORTH. His agreed to try.

Mr. Wang spent many weekend on my computer, and literally
glued his nose to the CRT screen. Most of the games collected
here were his handiwork. Unfortunately, he landed a job with
a local disk controller manufacturer and had to bid farewell to
my computer. Otherwise, he might have just finished translating
the whole book of games by now.

We can make some observations in comparing the same game
written in FORTH with that in BASIC. First, the string
processing capability of BASIC is quite extensive and it can
handle conversation with the user very easily. Doing the same
things in FORTH, one has to invoke system words like WORD
and NUMBER. Second, in most of the games, integer arithmetic
is sufficient and FORTH works well. If it requires anything
at or above the level of square root, we have to go back and
start building tools in FORTH.

Lastly, lengths of programs in FORTH are approximately the
same as those in BASIC. The degree of readability of code is
also the same in either language. Therefore, comparing
individual programs, FORTH does not have much advantage over
BASIC, as far as programming alone is concerned. However,
many of the games require the same type of tools. If we build
these tools once, they can be used in other programs. The real
advantages in FORTH become obvious only by viewing all the
games together.

In a few games, I also throw in a second version which
deviates from the literal translation to take advantage of the
features unique to FORTH. I hope these second versions will
shed some light for the beginners and encourage them to dig
deeper into the FORTH treasure box.

ANIMAL

This game was adapted from Basic Computer Games, p. 4, Ed.
D. H. Ahl, attributed originally to A. Luehrman at Dartmouth
College. This program is very interesting because animals are
added to the program as the game is played and it can be adapted
to other areas of interests.

ORIGIN The starting block to store animal information.

K A running index pointing to the line of message stored
on disk.

KEY, EMIT Standard terminal I/0 instructions.

LINE From the line number, return the address of message in
disk buffer.

LAST Fetch the total number of lines stored in the first

cell in Block ORIGIN.

QUESTIONS AND ANSWERS

.QA Print the message by its line number.
.ANIMAL Print all the animals in the file.
YES Wait for a key stroke. Return true if 'Y' is pressed.

QUESTIONS Ask questions and wait on keyboard. 1If 'Y' is keyed,
exit the loop and store the line number in K.

QUERY Wait for a text line input from the keyboard.

INPUT Ask the user to type in a question that would distin-
guish two animals.

NEW-ANIMAL Get the new animal's name and add it to the file.

ANSWER Get a YES/NO answer from the user and update the line
of question, in which the first two bytes point to two
lines for YES/NO branching.

FINAL LOOP
EXPAND Move the K'th line to the end of file.
GUESS Ask the user if the computer guessed the right animal.

'Y' indicates end of game. Otherwise, go the the
routine to add a new animal to the file.
ANIMAL The main game loop.

135 LIST

(ANIMALS, CHT, 23-NOV-82)
140 CONSTANT ORIGIN
VARIABLE K

: KEY 0 'S 1 EXPECT ;
: EMIT 'S 1 TYPE DROP ;
: LINE (N --—-24) 16 /MOD ORIGIN + BLOCK
SWAP 64 * + :
: LAST (--- N) ORIGIN BLOCK € ;
: QA (N ---) LINE 2+ 62 -TRAILING TYPE ;
¢ .ANIMALS (-—-) CR ." ANIMALS I ALREADY KNOW ARE:"

CR 0 LAST 0 DO
I LINE @ 0= IF I .QA 3 SPACES 1+ THEN

DUP 5 = IF CR DROP 0 THEN LOOP DROP ;
: YES (== P } KEY 89 = ;
136 LIST
(ANIMALS, II, CHT, 23-NOV-82)
: QUESTIONS (=---)
1 BEGIN DUP LINE @ IF CR
DUP .QA LINE . YES + C@ AGAIN K ! H

: QUERY SO0 @ 64 EXPECT 0 >IN ! H
INPUT CR ." PLEASE TYPE IN A QUESTION THAT WOULD DISTINGUISH
A" CR HERE COUNT TYPE ." FROM A " K @ .QA Mg

QUERY ;

: NEW-ANIMAL CR ." THE ANIMAL YOU WERE THINKING WAS A :"
QUERY 1 WORD 1+ LAST 1+ LINE 0 OVER !
2+ HERE C@ MOVE UPDATE :

: ANSWER CR ." FOR A " HERE COUNT TYPE
." THE ANSWER WOULD BE :"
1l WORD 1+ K @ LINE 2+ HERE C@ MOVE UPDATE
LAST DUP 1+ YES 0= IF SWAP THEN 256 * + K @ LINE
! 2 0 LINE +! UPDATE :

137 LIST

(ANIMALS, III, CHT, 23-NOV-82)
EXPAND K @ LINE LAST LINE 64 MOVE
GUESS CR ." IS IT A " K @ .QA " PN
YES CR ABORT" —--- TYPE 'ANIMAL' TO TRY AGAIN."
NEW-ANIMAL EXPAND INPUT ANSWER ;
ANIMAL BEGIN CR CR
." ARE YOU THINKING OF AN ANIMAL?"
YES IF QUESTICNS GUESS
ELSE .ANIMALS (FLUSH) THEN
CR CR 0 END ;

-
’

EXIT

PRINT THE FILE

PRINT Print the contents of the entire file. The first
two bytes are pointers to other lines, and they are
printed separately. Because of these two bytes, the
file cannot be listed using the regular LIST command.

SOME COMMENTS

When I first took on the task of translating BASIC games
into FORTH, I was very optimistic in that I could write the
same game in much shorter codes, and really make the FORTH
programs outshine their BASIC brothers. After a number of
tries, I was not so sure of myself. The string commands in
BASIC are very efficient in doing user interfacing. 1In
comparison, I have to use QUERY, WORD, NUMBER, etc, to do the
same thing.

The FORTH programs are not much better than the BASIC
programs in length or in clarity. I am sure the FORTH programs
will run much faster, but speed is not a very important concern
in these games. I had to be satisfied in that I had done some
examples to compare these two languages, without proving that
FORTH is superior than BASIC.

138 LIST

(ANIMALS, IV, CHT, 23-NOV-82)

: PRINT LAST 0 DO CR I LINE DUP C@ 3 U.R 1+ Cé 3 U.R
I .0A LOOP ;

EXIT

139 LIST

140 LIST

DOES IT SWIM
DOES IT HAVE SCALES
DOES IT LIKE PEANUTS

IS IT STREAMLINED
FISH

CALENDAR

This program is adopted from BASIC COMPUTER GAMES, p. 37,
attributed to Geoffrey Chase of Abbey, Portsmouth, RI. To print
a year's calendar, you must specify the day of 1 Jan and the
year.

MONTH >DAY Given the month (0-11), it returns the days in that
month by looking up the table MONTH>DAYS above.

MONTHS A super string containing the names of the months.

STARS Print out a string of '*',

TITLE Print the header of a month specified on stack.
SKIP-DATE Skip N columns in printing the first day of month.
WEEKS Print days of a month in the 7 column format.

NEXT-MONTH From day-of-year and month, calculate the day of
lst-of-month for next month.

MONTHS Given lst-day-of-year, print out a 12 month calendar.

HEAD Print the header for the year calendar.

?LEAP Return true if processing a leap year.

PLUS-ONE Assign 29 days to Febuary in the leap year.

CALENDAR The final word doing all the processings to print out
a year calendar. The day of 1 January and the year in
AD must be given on the data stack.

96 LIST

(CALENDER)
CREATE MONTH>DAYS 31 , 28 , 31 , 30 , 31 , 30 ,
‘ 31,31, 30, 31, 30, 31,

: MONTH>DAY (MONTH ---) 2 * MONTH>DAYS + @
: MONTHS ." JANUARY FEBRUARY MARCH APRIL MAY JU
NE JULY AUGUST SEPTEMBER OCTOBER NOVERBER DECEMBER" ;
.MONTH 9 * ['] MONTHS + 3 + 9 TYPE ;
STARS (N === 0 DO 42 EMIT LOOP ;
97 LIST
(CALENDER)
: TITLE (MONTH ---) 3 CRS 27 STARS .MONTH 36 STARS CR CR
8 SPACES ." 8" 8 SPACES ." M" 8 SPACES ." T" 8 SPACES
." W" 8 SPACES ." T" 8 SPACES ."™ F" 8 SPACES ." 8" CR CR
72 STARS CR CR ;
SKIP-DATE (N ——=) DUP ?DUP IF 9 * SPACES THEN ;
: WEEKS (D-Y D/M --- D-Y) 1+ 1 DO I 9 U.R DUP I + 7 MOD
= IF CR CR THEN LOOP ;
NEXT-MONTH (MONTH --- DAY) MONTH>DAY + 7 MOD ;
98 LIST
(CALENDAR con't) :
: MONTHS (1ST-DAY-OF-YEAR ---, 0 FOR SUNDAY)

12 0 DO I TITLE SKIP-DATE
I MONTH>DAY WEEKS I NEXT-MONTH LOOP DROP ;

HEAD (Y ---) 20 CRS 25 SPACES . ." CALENDAR " 3 CRS ;
2LEAP (Y --- F) 4 MOD 0= ;
PLUS-ONE (F -==) IF 29 ELSE 28 THEN 2 MONTH>DAYS + ! ;
CALENDAR (1ST-DAY YEAR ---)

DUP HEAD ?LEAP PLUS-ONE MONTHS CR ;

6 1983 CALENDAR

CALENDAR, 2ND VERSION

The BASIC CALENDAR works fine. However, you have to look up
which day is the Jan. 1 and tell the computer before it does
the printing. This version can determine that day automatically.

JULIAN The Julian day of the first day in the year. This
Julian calendar starts at Jan. 1, 1949.

4YEARS Total days in four years, including a leap year.

DAY An array of the first day of each month, offset from
Jan. 1.

DAYO A copy of DAY, modified for leap year if the year to
be processed is a leap year.

YEAR Calculate the Julian day of Jan. 1 and prepare DAYO.

EMIT Standard EMIT.

STARS Print a string of stars.

PRINT ONE MONTH

HEADER Print the header for the month identified on stack.

BLANKS Skip columns according to the day of the first day
in this month.

.DAYS Print the days in a month in the column format.

MONTH Print one month calendar.

PRINT CALENDAR

Give the year to CALENDAR and it will print the year's
calendar, taking care of leap years and days all by itself.

10

