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INTRODUCTION

This volume contains the texts of the three main lecture series given at the
CIME session on "Theory of moduli" held in Montecatini during the period 21-29
June, 1985.

The lectures survey some important areas of current research in topology,
complex analysis, algebraic geometry, which have as their common denominator the
study of moduli spaces. Hopefully, this volume will be a useful reference text on
the subject.

Other, more specialized, lectures were also given during the session but they
are not reproduced here.

I am very grateful to the three authors, to the other lecturers and to all the
participants to the conference for their interest and collaboration.

My thanks go also to the CIME for making the conference possible.

Edoardo Sernesi
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MODULI OF ALGEBRAIC SURFACES
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F. Catanese - Universitd di Pisa

Contents of the Paper

Lecture I: Almost complex structures and the Kuranishi family (§1-3)

Lecture II: Deformations of complex structures and Kuranishi's theorem
(84-6)

Lecture III: Variations on the theme of deformations (§7-10)

Lecture IV: The classical case (§11-13)

Lecture V: Surfaces and their invariants (§14-15)
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Lecture VIII: Bihyperelliptic surfaces and properties of the moduli spaces
(§21-23)

Introduction

This paper reproduces with few changes the lectures I actually delivered at the
C. LM, E, Session in Montecatini, with the exception of most part of one lecture
where Italked at length about the geography of surfaces of general type: the reason
for not including this material is that it is rather broadly covered in some survey
papers which will be published shortly ([Pe], [Ca 3], [Ca 2]).

Concerning my original (too ambitious) intentions, conceived when I accepted
Eduardo Sernesi's kind invitation to lecture about moduli of surfaces, one may
notice some changes from the preliminary program: the topics '"Existence of
moduli spaces for algebraic varieties' and '""Moduli via periods'' were not treated.
The first because of its broadness and complexity (I realized it might require a
course on its own, while I mainly wanted to arrive to talk about surfaces of general
type), the second too because of its vastity and also for fear of overlapping with the

course by Donagi (which eventually did not treat period maps and variation of

>'<A member of G.N, S, A,G. A, of C,N,R., and in the M, P. L. Research Project in
Algebraic Geometry,
**The final version of the paper was completed during a visit of the author to the
University of California, San Diego,



Hodge structures). Anyhow the first topic is exhaustively treated in Popp's lecture
notes ([Po]) and in the appendices to the second edition of Mumford's book on
Geometric Invariant Theory ([Mu 2]), whereas the nicest applications of the theory
of variation of Hodge structures to moduli of surfaces are amply covered in the
book by Barth-Peters-Van de Ven ([B-P-V]).

Also, Imainly treated moduli of surfaces of general type, and fortunately
Seiler lectured on the results of his thesis ([Sei 1,2,3]) about the moduli of (polarized)
elliptic surfaces: Ihope his lecture notes are appearing in this volume,

Instead, the part on Kodaira-Spencer's theory of deformations and its connec-
tions with the classical theory of continuous systems started to gain a dominant
role after [ gave a series of lectures at the Institute for Scientific Interchange
(I. S. I.) in Torino on this subject. In fact, after Zappa ( cf. [’/.p] , [Mu 3]) discov-
ered the first example of obstructed deformations, a smooth curve in an algebraic
surface, it was hard to justify most of the classical statements about moduli (and
in fact, cf. lecture four, some classical problems about completeness of the char-
acteristic system have a negative answer).

Interest in moduli was revived only through the pioneering work of Kodaira-
Spencer and later through Mumford's theory of geometric invariants, Mumford's
theory is more algebraic and deals mostly with the problem of determining whether
a moduli space exists as an algebraic or projective variety, whereas the trans-
cendental theory of Kodaira and Spencer (in fact applied in an algebraic context by
Grothendieck and Artin) applies to the more general category of com plex mani-
folds (or spaces), at the cost of producing only a local theory, In both issues, it is
clear that it is not possible to have a good theory of moduli without imposing some
restriction on complex manifolds or algebraic varieties,

Surfaces of general type are a case when things work out well, and one would
like first to investigate properties and structure of this moduli spaces, then to
draw from these results useful geometric consequences. It is my impression that
for these purposes (e.g. to count number of moduli) the Kodaira-Spencer theory is
by far more useful, and not difficult to apply in many concrete cases. I fact, it
seems that in most applications only elementary deformation theory is needed, and
that's one reason why these lecture notes cover very little of the more sophisti-
cated theory (cf. §10 for more details). The other reason is that the author is not
an expert in modern deformation theory and realized rather late about the existence
or importance of some literature on the subject: in particular we would like to

recommend the beautiful survey paper ([Pa]) by Palamodov on deformation of



complex spaces, whose historical introduction contains rather complete informa-
tion regarding the material treated in the first three lectures,

Since the style of the paper is already rather informal, we don't attempt any
discussion of the main ideas here in the introduction, and, before describing with
more detail the contents, we remark that the paper (according to the C, LM, E.
goals) is directed to and ought to be accessible to non specialists and to beginning
graduate students, Of course, reasons of space have obliged us to assume some
familiarity with the language of algebraic geometry, especially sheaves and linear
systems,

Finally, in many points references are omitted for reasons of economy and
the lack of a quotation of some author's name (or paper) should not be interpreted
as any claim of originality on my side, or as an underestimation of some scientific
work,

§1-5 summarizes the essentials of the Kodaira-Spencer-Kuranishi results
needed in later sections, following existing treatments of the topic ([K-M], [Ku 3]),
whereas §6 is devoted to a single but enlightening example., §7 deals with defor-
mations of automorphisms, whereas §8-9 are devoted to Horikawa's theory of
deformations of holomorphic maps, with more emphasis to applications, such as
deformation of surfaces in 3-space, or of complete intersections, and include some
examples of everywhere obstructed deformations, due to Mumford and Kodaira,
§10 is a ''mea culpa'' of the author for the topics he did not treat, §11-13 try to
compare Horikawa's and Schlessinger-Wahl's theory of embedded deformations,
whereas §12 consists of a rewriting, with some simplifications of notation, of
Kodaira's paper ([Ko 3]) treating embedded deformations of surfaces with ordinary
singularities, §14-17 give a basic resumé on classification of surfaces and §18-19
are devoted to basic properties of surfaces of general type and a sketchy discus-
sion of Gieseker's theorem on their moduli spaces. §20-23 include a rough outline
of recent work of the author and a result of I, Reider: §20 deals with the number
of moduli of surfaces of general type, §22 outlines the deformation theory of
(Z/Z)2 covers, §21 and 23 exhibit examples of moduli spaces with arbitrarily many
connected components having different dimensions, and discuss also the problem
whether the topological or the differentiable structure should be fixed,
Acknowledgments: I is a pleasure to thank the Centro Internazionale Matematico
Estivo and the Institute for Scientific Interchange of Torino for their invitations to
lecture on the topics of these notes, and for their hospitality and support., I'm also

very grateful to the University of California at San Diego for hospitality and support,
and especially to Ms., Annetta Whiteman for her excellent typing.




LECTURE ONE: ALMOST COMPLEX STRUCTURES and the
KURANISHI FAMILY

In this lecture I will review the construction, due to Kuranishi, of the complex
structures, on a compact complex manifold M, sufficiently close to the given one.
To do this, one has to use the notion of almost complex structures, of integrable
ones: in a sense one of the main theorems, due to Newlander and Nirenberg, is a
direct extension of a basic theorem of differential geometry, the theorem of

Frobenius.

§1. Almost complex structures

w
Let M be a differentiable (or C , i.e. real analytic) manifold of dimension

equal to 2n, T its real tangent bundle,

M

Definition 1.1. An almost complex structure on M is the datum of a splitting
1,0 0,1 l.O_TO,l

T ®8 C =T

M 2 T

with T

Naturally, the splitting of T, _® € induces a splitting for the complexified cotan-
M 1,0V Os 1Y rorpdnOiY . 0,1
gent bundle TM ® C= (T"") &(T )y (T ) is the annihilator of T ), and for

th
all the other tensors. In particular for the r exterior power of the cotangent

v v \
bundle, one has the decomposition /\T(TM R C) = D /\p(Tl' O) 2 /\q(To' 1) .

ptq=r
Vv v
We shall denote by £ Pr9 the sheaf of c” sections of /\p(Tl' 0) ® /\q(TO' 1)

(resp. by GP’9 the sheaf of C’D sections), by 7 the sheaf of Cm sections of
\%
r
T . 2 C).
a4 M )

5 The De Rham algebra is the differential graded algebra (Eﬁ’, d), where & =
n

® €7, and d is the operator of exterior differentiation. For a function f, df €
TLO g ,01
€7 ®E7’ " and one can write accordingly df = 9f + 9f; the problem is whether for

- + =
all forms % one can write d = 9 + 9, with 0: ePd, eP l,q' 5: P9, ep,qH

2

2 = E 2
(then one has 8 =0 =09 + 980 =0, since d = 0). Hence one poses the following

Definition 1. 2. The given almost complex structure is integrable if

aEeP9) c ePtha g gpratl

As a matter of fact, it is enough to verify this condition only for p=1, q = 0.

Lemma 1.3. The almost complex structure is integrable <= d(El' .

81’1

o e 0g

1,0
. [Hence another equivalent condition is: € generates a differential ideal. ]



Proof. The question being local, we can take a local frame for el 0, i.,e. sections

1,0

W,...,» of €& whose values are linearly independent at each point (locally,
n

1
0 . .
el, 0 is a free module of rank n over € , and {xl, #5 ® Un} is a basis). Our

weaker condition is thus that

(1.4) dw = 2

W AW + z —_w_ AW
CDCIBV 8 v 3 qu18\( B v

B<y )Y

(where ”DaYB and d”aa? are functions) since every W € 61’ can be written as
22:1 fanq' and {'DS/\ Uy|1S3< v < n)} is a local frame for 52,0 ) {”5/\5\( l
1<8,v<n} isa local frame for 61’1. Now gl o gh0 hence
d(eo' 1) ceblo 0l and one verifies d(® %) c gPtlid g gPratl by induction
on p,q, since locally any 7 € eP' 9 can be written as 22:1 T]q/\ 'Uct +
T 9 AT, with m_€ePld 4 gePal Q.E.D,

a=1 n a a o —_

) At this stage, one has to observe that if M is a complex manifold, then
vi0 1,0V

(T ) (T ) is generated (by definition !) by the differentials df of holo-
morphic functions (at least locally, if one has a chart (zl, R zn): u-c" s
V1,0
dzl, ...,dz give a frame for (T ) ). Conversely, one defines, given an almost
n

complex structure, a function f to be holomorphic if 3 =0 (i.e., df € 51' 0); one
sees easily, by the local inversion theorem of U, Dini, that the almost complex
structure comes from a complex structure on M if and only if for each p in M
there do exist holomorphic functions Fl' e Fn defined in a neighborhood U of

p and giving a frame of 61' ¥ over U, This occurs exactly if and only if the almost
complex structure is integrable: we have thus the following (cf. [N-N] , [HSr] for

a proof).

@
Theorem 1.4 (Newlander-Nirenberg). An almost complex structure ona C

manifold comes from a (unique) complex structure if and only if it is integrable.

Following Weil (Iwel, p. 36-37) we shall give a proof in the case where
everything is real-analytic, because then we see why this is an extension of the

theorem of Frobenius that we now recall (see [Spiv I] for more details, or [Hi] ).

Theorem 1.5. Let CPI, 5 il ,CDI_ be 1-forms defined in an open set Q in r" and
linearly independent at any point of Q. Then for each point p in Q there do exist
local coordinates xl. Fw e xn such that the span of CDl, . ,CDr equals the span of
dxl,...,dxr, = CDI

ye..,® span a differential ideal (i.e., YVi=1,...,r 3
r
forms 4,, (j=1,...,r), s.t. do, = ET_ o, N P ).
ij i j=17j ij



Proof. The usual way to prove the theorem is to consider, Y p' in { the space

VP, of tangent vectors killed by '3«01, . ,CDr: then in a neighborhood U of p there

exist vector fields X , X spanning Vp, for any p’ in U. Since
n

r+l’ "
P (XX 1) = X @,(X)) - X, (9,(X)- do (X, X))

we see that the vector field [Xj,Xk] at each p' in U lies in Vp, . One looks then

for coordinates Hyseeor X sets Vp, is spanned by a/axr+1"'

coordinates are obtained by induction on (n-r). In fact, by taking integral curves of

- B/Bxn , and these

the vector field Xn' one canassume X =0/0x , and replaces X by Y =X -
n n i i i
(X.x )X , which span the subspace W , of vectors in V_, killing x , and so
i'n " n p p n

also the vector field [Y_,Y.] at each point p' in U liesin W , (if X(x ) =0,
i ) n

Y(xn) =0 = |X,Y] (xn) = 0!). By induction there are coordinates (yl, - ,yn) with
n
w 9 = L
5 spanned by /3yr+l....,8/8yn_1. We can replace Xn J.zlaj(y)(a/ayj) by
r
Y =% dy.) + dy ); si dy.), Y i=r+l,...,n-
u i=1 aj(y)(a/ yj) an(y)(a/ yn) since [(8/ Yi) n] (i=r+1 n-1) equals
S 250 o
3 F oy, .ou-l ¥y O

but on the other hand, this vector field is in V;), thus it is a multiple of Yn by a
function f. But then, on the one hand, [(B/Byi),Yn] (xn) =0 (since Yn(xn) =
Xn(xn) =1!), on the other hand this quantity must equal fYn(xn) = f. Hence the
functions aj(y) (j=1,...,r,n) depend only upon the variables YyreeesY oY, » SO
by taking integral curves of the vector field Yn , we can assume Yn = B/Byn also.

Q.E.D.

We have given a proof of the well known theorem of Frobenius just to notice
that the only fact that is repeatedly used is the following: if X is a non zero vector
field, then there exist coordinates (xl, sEes xn) s.t. X = 8/8);n . This follows from
the theorem of existence and unicity for ordinary differential equations and from
Dini's theorem. Both these results hold for holomorphic functions (they are even

simpler, then), therefore, given a non zero holomorphic vector field Z =

n
Zi_l a.(w) 9/0w, on an open set in CEn (i. e., the ai's are holomorphic functions),
=17 i
there exist local holomorphic coordinates Zireeen 2 around each point such that
Z =0/0z .
n

The conclusion is that the theorem of Frobenius holds verbatim if we replace

Rr" by c”, we consider holomorphic (1, 0) forms 591, ceea® and we require local
holomorphic coordinates ZyseeeaZ s, t. the C€-span of CDI, .. ,CDr be the C-span
of dzl, a s dzr . The proof of the Newlander-Nirenberg theorem in the real ana-

lytic case follows then from the following.



Lemma 1.6. Let Q be an open set in lRZn, let LIEERREL be real analytic com-
plex valued l-forms defining an integrable almost complex structure (i.e., 1.4

holds). Then, around each point p € 2, there are complex valued functions

Fl""'Fn s.t. the span of dFl,...,an equals the span of Wireen®
Proof. Take local coordinates Xppeoon X around p s.t. each Lua is expressed
2n K
" T , - i-
by a power series ZjZlLK f(xj, K X dxj , where K (kl’ . .kzn) denotes a mu;tl
index. Then ®_ =L, f . xK dx, and, if we consider R2D as contained in C n,
o« j,Kaj,K j

upon replacing the monomial x— by the monomial ZK and xj by dzj (here xJ. is

the real part of Zj! ), w, and z extend to holomorphic 1-forms by» My ina neigh-

2 -
borhood of p in C n. Since L‘l,..‘,L‘n, JJl,....

the wa's 3 T]a's give a basis for the module of holomorphic 1-forms, therefore one

v area local frame for &,

can write

dw_ = z o} w.o AN+ zq; n_ATM O+ Z g n_AnN
a as
3=y a8y B v 3’\(&3\( 8 v < y 3 Y

2
By restriction to R n , using (1.4) we see that £ - = 0, hence wl, w5 .,wn span
v

a differential ideal, hence Frobenius applies and there exist new holomorphic coordi-
2
nates in € P Wy Wo s.t. the span of dwl,. o3 ,dwn equals the span of
Zn

LR We simply take Fi to be the restriction of w, to R, Q.E.D.

Remark 1.7. Assume that for t = (tl, - o tm) in a neighborhood of the origin in

C one is given real analytic 1-forms D qreeea® oasin lemma 1.6 which are

expressed by convergent power series in tl, o1y tm' and define an integrable almost

complex structure when t belongs to a complex analytic subspace B containing the

PP
t, 1 t,n

expressed as convergent power series in (tl, ...,t ). In fact, if a vector field Xt
m

origin. Then, for t in B, the conclusions of lemma 1.6 hold with F

is given by a convergent power series in t ¢ 'tm also the solutions of the asso-

17

ciated differential equation are power series in t ,tm: moreover, by the local

o
inversion theorem for holomorphic functions, if f(x,t): 2 » Q is locally invertible,
real analytic in x and complex analytic in t, then the local inverse is also complex

analytic in t.

§2. Small deformations of a complex structure

If U is a vector subspace of a vector space V, and W is a supplementary
subspace of U in V (thus we identify V with U ® W), then all the subspaces U’,

of the same dimension, sufficiently close to U, can be viewed as graphs of a linear



map from U to W: we apply this principle pointwise to define a small variation of

an almost complex structure (hence also of a complex structure).

Definition 2.1. A small variation of an almost complex structure is a section © of
1

\%
Tl'0 ® (TO' ) (the variation is said to be of class C’ if © is of class Cr).

Remark 2.2. To a small variation © we associate the new almost complex struc-

0,1 1,0 0,1 . )
ture s.t. T, = {(u, v) €T & T I u=wv(v)}, since there is a canonical iso-

P
, 0 0,1V 0,1 .1,
morphism of T1 ¥ (T ) with Hom(T iy 0),

We assume from now on that M is a complex manifold: then, in terms of local

holomorphic coordinates (zl’ . e Zn) one can write O as
(2.3) ® = Z wi(z)dza 2 ai

o, 8 %a
so that

a ) B 3
. o 1,0V , B
and is annihilated by (Tcp ) , the span of {wa = dzq - ZB P & dzB }. On the other
0:
hand, by what we've seen Tcp : is spanned by the E " 's, where

g =2 ZmY =2
Y 0z n 0z
Y a a

8 -
Since dw_= —ZB dCO(1 A dzB , we are going to write down the integrability condition

(1.4), which can be interpreted as

(2. 4) dma(sY,§6)=0 Y oa,v,8(y<5).
We have
acoB afpi
-dw =z —2 o N, ¥ —= AT A dF ,
a 9z € 8 ' oz € 8
B,e € €

’ ’ Z . .
which belongs to 61 lg 80 , hence kills pairs of vectors of type (1,0). We get

thus the condition

9 9 z Y _8 b
dwa(az 'az) +d”a(  Pa’ Bz, " Oz )
a o 8

5 Y 5 2 )
tdw, (az r L, Par g ) =R
Y a a

boiling down to



5 ¥ 8 Y
9y P 09— 0w
(2.5") a__a+z S L
: a'z'Y 825 = Bze € Bz€ € :

The condition that (2.5’) holds for each @ , and vy <08, can be written more simply

as
(2.5) 5w:%[co,w] ;
where
v 5
_ R .
8“‘3:2( (a'GL a')dz AT B =
= 3 zg zY z,
5 —
LN oY 5
[co,co]:zz Z (Z o' - co)dz Adz, ® —
T VS S 0z € 3z€ 5 0z
_ 8w 0 = a0
Y - 9 _ b € — d
= dz o ANdz, ® — -dz_© ANdz B —
Y e 0z 8 dz 5 o 0z dz
G..€,Y16

We shall explain these definitions while recalling some standard facts on Dolbeault
cohomology and Hodge theory (harmonic forms).
So, let V be a holomorphic vector bundle, and let (Ua) be a cover of M by

wE T 3 r 2
open sets where one has a trivialization VIU = U X € , hence fibre vector co-
a ‘

ordinates ! related by v_ = gCLB Vg where gaB is an invertible r X r matrix

a
of holomorphic functions. We let e0s P(V) be the space of (Cw) sections of

V i -
vV ® Ap(TO' 1) : since 0 G 0, it makes sense to take 0 of (0, p) forms with

O'
values in V (i.e., elements of € p(V)), and we have the Dolbeault exact sequence

of sheaves _ _ _
81 82 9

06w »ew) — 2l 5 ... 800

(v) » o0 ,

where 6(V) is the sheaf of holomorphic sections of V. We have the theorem of

Dolbeault (the So'k(V) are soft sheaves).

Theorem 2. 6.

; ker HO(E-)H_I)
H'(M, 6(V)) = g

Im H (8,1)

So 8 is well defined for our P € BO' l(Tl' O). For further use, we shall use the

1,0
notation ® = 6 (T ). To explain the bracket operation, we notice that this is a

bilinear operation



