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Figure on the front cover:

We show on the cover one item pertaining to computer simulation of competition
between chain relaxation and crack propagation (cf. Section 10.4). The horizontal coor-
dinate is time, beginning on the left with the moment of breaking a bond between
two segments of a polymer chain. The vertical axis shows the distance between adjacent
segments. The continuous line shows oscillations of a segment adjacent to the broken
bond, the broken line similarly oscillations of the next segment. In the present case
oscillations subside with time, and a new stable position is found. In some other simula-
tions breaking of a series of neighboring bonds and crack propagation were observed.
(From W. Brostow and D.P. Turner, J. Rheology 1986, 30, August issue).



Foreword

The Society of Plastics Engineers is pleased to sponsor and endorse *Failure of
Plastics”. The subject matter is both of significant importance within the plastics in-
dustry and of great interest to users of plastics materials. The authors are highly re-
spected and well known in SPE for their expertise in the subject. Dr. Roger Corneliussen
has been affiliated with the SPE educational seminar program for many years and
his presentation on ““ Failure Mechanism in Plastics”” has been among the most popular
and well attended programs.

SPE, through its Technical Volumes Committee, has long sponsored books on various
aspects of plastics and polymers. Its involvement has ranged from identification of
needed volumes to recruitment of authors. An ever-present ingredient, however, is
review of the final manuscript to insure accuracy of the technical content.

This technical competence pervades all SPE activities, not only in publication of
books but also in other areas such as technical conferences and educational programs.
In addition, the Society publishes four periodicals — Plastics Engineering, Polymer
Engineering and Science, Journal of Vinyl Technology and Polymer Composites — as
well as conference proceedings and other selected publications, all of which are subject
to the same rigorous technical review procedure.

The resource of some 25,000 practicing plastics engineers has made SPE the largest
organization of its type in plastics worldwide. Further information is available from
the Society at 14 Fairfield Drive, Brookfield Center, Connecticut 06805.

Robert D. Forger

Executive Director
Society of Plastics Engineers



Preface

Failure has been a serious problem in the use of materials since the beginning of
recorded history. To a large extent, the development of materials science and engineering
has resulted because of serious failures. This is no less true for the newer materials
such as polymeric ones. Unfortunately, such failures will become even more important
as the number of critical engineering applications of polymers increases. The problem
is especially difficult: polymeric materials are sensitive to processing, and affected by
the environment, time, and temperature often in an “unpredictable”” manner.

The present book was organized with this situation in mind. Although at first we
thought of writing the whole book ourselves, the breadth of this area made the task
very difficult. Instead, we decided to invite experts to contribute. We are very pleased
at the caliber of those who accepted the challenge. They come from three continents.
We believe this volume will give the practicing engineer as well as the researcher insight
into each of the pertinent areas. To a considerable extent, the result is a forum for
presenting relatively new, consistent, and exciting approaches to the entire field of
failure phenomena.

An attempt has been made to make the chapters as uniform as possible from the
point of view of symbols, terminology and units in particular. Each of us was frustrated
many times perusing proceedings of conferences, even exciting ones, when the same
quantity was discussed under different names by different authors, with no connections
between contributions. Here, our authors have mutually read the contributions made
before submitting the final versions of their respective chapters. Referees have also
paid attention to possible repetitions, introduction of cross references, and uniformity.
At the same time, we wanted to. preserve the intent of individual writers. A delicate
task of reviewing the entire volume, taking into account these factors, has been per-
formed by David P. Turner of Drexel ‘University. It is thanks to these efforts that
we have a volume with much more coherence than the average collective work.

In addition to those named above, we would like to thank Mr. Joachim Spencker,
the Publisher, and also Dr. Edmund H. Immergut, Consulting Editor for Hanser,
for their initiative, as well as for their cheerfully given help and advice. Working with
them and with our large international team of authors and experts has been a rare
pleasure.

Failure, to some extent, is the dark side of engineering. We hope this book will
help the polymer community deal successfully with these problems in a positive and
satisfying manner. Putting together what we already know ought to lead to a coherent
view of failure. Such a view would greatly aid the prevention of future unpredictable
failures of polymeric materials.

Witold Brostow and Roger D. Corneliussen
Philadelphia, January 1986
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List of Important Symbols

The quantities listed here are those recommended by international learned unions and/or
used by the majority of the authors.
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constants

acceleration

shift factor

surface energy

frequency

height; depth; the Planck constant

the Boltzmann constant

length

length at maximum deflection

original length

final length

mass

refractive index

number of defects

stress vector; polar coordinate

degree of polymerization; radius
specific shear strength; cluster size
time

relaxation time

specific volume; velocity

craze velocity

characteristic volume

work ; weight

wear volume

Cartesian coordinates

area

coefficients

coefficients

coefficients

tensile creep compliance

maximum value of dynamic relaxation
the Young modulus =modulus of elasticity
tensile stress relaxation modulus

force

maximum relaxation rate

the Gibbs function; names “free energy”
or “free enthalpy” should not be used
interfacial fracture energy

shear modulus

storage modulus

loss modulus

enthalpy

hardness; yield pressure

intermittant relaxation

Joule (unit)

J-integral

dielectric constant at limiting frequency
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List of Important Symbols

shear compliance

degree Kelvin

critical stress intensity factor

plane strain fracture toughness

stress intensity factor

stress concentration factor

load

contour length of i-th polymer segment
end-to-end distance of a segment

stress transfer length

the Avogadro number

pressure

gas constant

entropy

thermodynamic (=absolute) temperature
glass transition temperature

energy

volume

toughness; wear

isobaric expansivity (also called cubic or thermal
expansion coefficient; the first name given is recommended)
relaxation parameter

geometric factor; material constant
polarizability

coefficient

shear strain

loss tangent

maximum loss tangent

surface tension

linear strain =relative elongation =engineering strain
engineering strain of the amorphous region
permittivity

permittivity

dielectric loss factor

complex permittivity

permittivity of vacuum =electric constant
relative permittivity

viscosity

isothermal compressibility

wavelength ; uniaxial deformation

dipole moment; friction coefficient
absorbed energy

the Poisson ratio

mass density (not number density)
cross-link density

engineering stress

initial stress at time =0

true stress

shear stress

circular frequency
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