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PREFACE

The first German edition of this volume was published by Julius
Springer, Berlin, in 1924. A second edition, revised and improved
with the help of K. O. Friedrichs, R. Luneburg, F. Rellich, and other
unselfish friends, followed in 1930. The second volume appeared in
1938. In the meantime I had been forced to leave Germany and was
fortunate and grateful to be given the opportunities open in the
United States. During the Second World War the German book be-
came unavailable and later was even suppressed by the National
Socialist rulers of Germany. Thus the survival of the book was
secured when the United States Government seized the copyright
and licensed a reprint issued by Interscience Publishers, New York.
Such a license also had to be obtained from the Alien Property Cus-
todian for the present English edition.

This edition follows the German original fairly closely but contains
a large numher of additions and modifications. I have had to post-
pone a plan to completely rewrite and modernize the book in collabo-
ration with K, O. Friedrichs, because the pressure for publication of
an English “Courant-Hilbert”” has become irresistible. Even so, it
is hoped that the work in its present form will be useful to mathe-
maticians and physicists alike, as the numerous demands from all
sides seem to indicate.

The objective of the book can still today be expressed almost as
in the preface to the first German edition. “Since the seventeenth
century, physical intuition has served as a vital source for mathe-
matical problems and methods. Recent trends and fashions have,
however, weakened the connection between mathematics and physics;
mathematicians, turning away from the roots of mathematics in
intuition, have concentrated on refinement and emphasized the postu-
lational side of mathematics, and at times have overlooked the unity
of their science with physics and other fields. In many cases, physi-
cists have ceased to appreciate the attitudes of mathematicians.
This rift is unquestionably a serious threat to science as a whole; the
broad stream of scientific development may split into smaller and
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smaller rivulets and dry out. It seems therefore important to direct
our efforts toward reuniting divergent trends by clarifying the com-
mon features and interconnections of many distinct and diverse
scientific facts. Only thus can the student attain some- mastery of
the material and the basis be prepared for further organic develop-
ment of research. '

“The present work is designed to serve this purpose for the field of
mathematical physics. Mathematical methods originating in prob-
lems of physics are developed and the attempt is made to shape re-
sults into unified mathematical theories. Completeness is not at-
tempted, but it is hoped that access to a rich and important field
will be facilitated by the book.

“The responsibility for the present book rests with me. Yet the
name of my teacher, colleague, and friend, D. Hilbert, on the title
page seems justified by the fact that much material from Hilbert’s
papers and lectures has been used, as well as by the hope that the
book expresses some of Hilbert’s spirit, which has had such a decisive
influence on mathematical research and education.”

I am greatly indebted to many helpers in all phases of the task of
preparing this edition: to Peter Ceike, Ernest Courant, and Anneli
Lax, who provided most of the first draft of the translation; to Hanan,
Rubin and Herbert Kranzer, who have given constructive criticism;
to Wilhelm Magnus, who is responsible for the appendix to Chapter
VII; and to Natascha Artin and Lucile Gardner, who carried the
burden of the editorial work. Most cordial thanks also are due to
Interscience Publishers for their patient and helpful attitude and to
my old friend and publisher, Dr. Ferdinand Springer in Heidelberg,
the great pioneer of modern scientific publishing, for his sympathetic
understanding of the situation, which has so greatly changed since the
old days of our close cooperation.

R. CouranT

New Rochelle, New York
June 1958
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CHAPTER 1

The Algebra of Linear Transformations
' and Quadratic Forms

In the present volume we shall be concerned with many topics in
mathematical analysis which are intimately related to the theory
of linear transformations and quadratic forms. "A brief résumé of
pertinent aspects of this field will, therefore, be given in Chapter L
The reader is assumed to be familiar with the subject in general.

§1. Linear Equations and Linear Transformations

1. Vectors. The results of the theory of linear equations can be
expressed concisely by the notation of vector analysis. A system

of n real numbers z, , 2 , -+ - , 2 is called an n-dimensional vector or a
vector in n-dimensional space and denoted by the bold face letter x;
the numbers z; (i = 1, - - - , n) are called the components of the vector

x. If all components vanish, the vector is said to be zero or the null
vector; for n = 2 or n = 3 a vector can be interpreted geometrically
as a “position vector” leading from the origin to the point with the
rectangular coordinates z;. Forn > 3 geometrical visualization is
no longer possible but geometrical terminology remains suitable.

Given two arbitrary real numbers X and g, the vector Ax + uy = 2z
is defined as the vector whose components z; are given by 2z:
= Az; + wy;. Thus. in particular, the sum and difference of two
vectors are defined.

The number
(1) xy=zgh+ -+ Tl = U+ o F Yala = T°X

is called the “énner product” of the vectors x and y.

Occasionally we shall call the inner product x-y the component of
the vector y with respect to X or vice versa.

If the inner product x-y vanishes we say that the vectors x and y
are orthogonal; for n = 2 and n = 3 this terminology has an imme-

1



2 I. LINEAR TRANSFORMATIONS AND QUADRATIC FORMS

diate geometrical meaning. The inner product x-x = x’ of a vector
with itself plays a special role; it is called the norm of the vector.
The positive square root of x* is called the length of the vector and
denoted by [x| = +/x%." A vector whose length is unity is called a
normalized vector or unit vector.

The following inequality is satisfied by the inner product of two
vectorsa = (a, -, a,) and b = (b, --- s bn):

(a-b)* < a’?

or, without using vector notation,

(G <(5)(29).

where the equality holds if and only if the a; and the b; are propor-
tional, i.e. if a relation of the form Aa + ub = 0 with A* + 4 < 0 is
satisfied.

The proof of this “Schwarz inequality’ follows from the fact that
the roots of the quadratic equation

Z”;(a.-x+be)’=z’ia3+2zzzafb¢+ng§= 0

for the unknown z can never be real and distinet, but must be imagi-
nary, unless the a; and b; are proportional. The Schwarz inequality
is merely an expression of this fact in terms of the discriminant of
the equation. Another proof of the Schwarz inequality follows.im-
mediately from the identity

gl a ;-an b — (Zﬂ a.-b.)2 =3 Z”: f_: (abe — axb))®.

te=]l jeul keml
Vectors x;, X5, -+ -, X, are said to be linearly dependent if a set
of numbers A, Az, -+, A, (not all equal to zero) exists such that

the vector equation
AXi+ o 4 X =0

is satisfied, i.e. such that all the components of the vector on the left
vanish. Otherwise the vectors are said to be linearly independent.
The n vectors e, , e,, - , e, in n-dimensional space whose com-

! This relation was, as a matter of fact, used by Cauchy before Schwarz.
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ponents are given, respectively, by the first, second, - - - , and n-th
rows of the array

0 0 LN ] 1’

form a system of n linearly independent vectors. For, if a relation
Ae; + - -+ 4+ e, = 0 were satisfied, we could multiply® this relation
by ex and obtain Ay = 0 for every h, since e = 1 and e;-e; = 0 if
h # k. Thus, systems of » linearly independent vectors certainly
exist. However, for any n + 1 vectors u;, ug, ---, Uy (in n-
dimensional space) there is at least one linear equation of the form

T30 TR +Iln+1un+x - 0

with coefficients that do not all vanish, since n homogeneous linear
equations

ntl
2 vapi = 0 (k=1,---,n)
for the n + 1 unknowns g , i , *** , uns1 always have at least one

nontrivial solution (cf. subsection 3).

2. Orthogonal Systems of Vectors. Completeness. The above “co-
ordinate vectors” e; form a particular system of orthogonal unit
vectors. In general a system of n orthogonal unit vectors e;, e;, - - - , e,
is defined as a system of vectors of unit length satisfying the relations

es=1  eve,=0 (h #= k)

for hy k, = 1, 2, ---, n. As above, we see that the n vectors
€,€, -, e, are linearly independent.
If x is an arbitrary vector, a relation of the form
CX — 1€ — - — a8 = 0

with constants ¢; that do not all vanish must hold; for, as we have
seen, any n + 1 vectors are linearly dependent. Since the e; are
linearly independent, ¢, cannot be zero; we may therefore, without

1To multiply two vectors is to take their inner product.
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loss of generality, take it to be equal to unity. Every vector x can
thus be expressed in terms of a system of orthogonal unit vectors in
the form

(2) X =c+ - - + caln-
The coefficients ¢; , the components of x with respect to the system
€, €, -, €, may be found by multiplying (2) by each of the vec-

tors e; ; they are
Ci = X-€;°

From any arbitrary system of m linearly independent vectors

Vi, V2, ***, Vi, Wwe may, by the following orthogonalization process
due to E. Schmidt, obtain a system of m orthogonal unit vectors
€, €, -, en: First set ¢ = vy/ |vi|. Then choose a number

¢1 in such a way that v, — c1e; is orthogonal to e; ,ie.setel = vy-e;.
Since v; and v», and therefore e, and v., are linearly independent,
the vector v; — ciey is different from zero. We may then divide this
vector by its length obtaining a unit vector e, which is orthogonal
toe;. Wenext find two numbersec; , c; such that v; — cie; — cre,
is orthogonal to both e, and e, , i.e. we set ¢; = v;-€; and c; = v;-€; .
This vector is again different from zero and can, therefore, be nor-
malized; we divide it by its length and obtain the unit vector e;.
By continuing this procedure we obtain the desired orthogonal system.

For m < n the resulting orthogonal system is called incomplete,
and if m = n we speak of a complete orthogonal system. Let us
denote the components of a vector x with respect to e;, e, - - - , e, by
C1,C, '+, Cm 88 before. The self-evident inequality

(X —cer— " — Cmem)’ >0

is satisfied. Evaluating the left side term by term according to the
usual rules of algebra (which hold for vectors if the inner product of
two vectors is used whenever two vectors are multiplied), we find

¥ -2 e+ rci=x—-22ci+2cl>0
Sl tam] ] =1
or

@®) > i &,
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where m < n and ¢; = x-e; ; the following equality holds form = n:

4 =2 i
=1 _

Relations (3) and (4)—(4) expresses the theorem of Pythagoras in
vector notation—have an intuitive significance for n < 3; they
are called, respectively, Bessel’s tnequality and the completeness rela-
tion. Relation (4), if it is satisfied for every vector x, does in fact in-
dicate that the given orthogonal system is complete since (4) could not
be satisfied for a unit vector orthogonal to all vectors e, , €z, - , €m,
and such a vector necessarily exists if m < n.

The completeness relation may also be expressed in the more general
form

® 2t = 3 e,

which follows from the orthogonality of the e;.

So far these algebraic relations are all purely formal. Their sig-
nificance lies in the fact that they occur again in a similar manner in
transcendental problems of analysis.

3. Linear Transformations. Matrices. A system of n linear equa-
tions

an + G + -+ + GaTn = U1,

©) anZs + 0n2s + c -+ GwZs = Y2,

GmZ1 + GasTa F oo+ AunZn = Yn;

with coefficients ax , assigns a unique set of quantities 1,42, - ** , ¥a
to every set of quantities z;,2;, -+, .. Such an assignment is
called a linear transformation of the set z;, zz, « -+ , Z» into the set
Vi, Y2, ", Yn, oOr, briefly, of the vector x into the vector y. This
transformation is clearly linear since the vector Ajy: + Azy: corre-
sponds to the vector \,;x; + A.Xa.

The most important problem in connection with linear transforma-
tions is the p' oblem of inversion, the question, in other words, of the



