The C Toolbox

William James Hunt

The C Toolbox

William James Hunt

A
vv
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts Menlo Park, California
Don Mills, Ontario Wokingham, England Amsterdam
Sydney Singapore Tokyo Mexico City Bogotad
Santiago San Juan

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial caps (e.g., VisiCalc) or all caps (e.g., UNIX).

Library of Congress Cataloging in Publication Data

Hunt, William James.
The C toolbox.

Bibliography: p.

Includes index.

1. C (Computer program language) 1. Title.
QA76.73.C15H85 1985 001.64'24 85-6171
ISBN 0-201-11111-X

Copyright © 1985 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the Publisher. Printed in the United States of

America. Published simultaneously in Canada.

ABCDEFGHI]J-HA-898765
First printing, July 1985

Cover désign by Marshall Henrichs
Text design by Judith Ashkenaz
Set in 10 point Caledonia by Pine Tree Composition, Inc., Lewiston, Maine

Acknowledgments

Several years ago I read Software Tools by Kernighan and Plauger. It helped me
to understand my years of programming experience. This book is inspired by Soft-
ware Tools and uses a similar approach to systems programming on personal com-
puters.

In the 11 years that I have been a professional programmer, I have learned
from many co-workers. Reading programs they had written was an essential part
of my education.

My wife, Lesley, has been invaluable in many ways. Her support encouraged
me to start writing a book (and to finish it). Her work in serving as editor and
guinea pig for the roughest of drafts was vital too. Finally, she volunteered to learn
C to be a better guinea pig. Greater love hath no spouse than to learn another
programming language. '

O wvii

Introduction

Anyone who has used a personal computer (PC) with good software such as Lotus’s
1-2-3 or Microsoft’s Flight Simulator knows that PCs have great potential. How-
ever, the best efforts of casual programmers working in BASIC are often very dis-
appointing. There is a wide gap between what average programmers can achieve
and what they see professional programmers achieve. This book helps bridge that
gap. It presents examples of complete, useful programs and discusses how they
were developed.

The programs are mostly utilities or tools programs that make using and pro-
gramming a PC easier. I chose these programs to illustrate programming tech-
niques and algorithms that are often mysterious to the casual BASIC programmer.
The programs also provide a concrete basis for discussing program design, coding,
and testing.

The book is also intended to be a showcase for the C language. If your ex-
perience is limited to BASIC, learning C (or another good high-level language like
Pascal) is a necessary first step for producing high-quality programs. While the
book is not a tutorial or primer on C, it provides concrete examples of its use and
is a good tool for learning C.

Programs

O To learn about programming (and C), you need to write programs. This book
provides a good starting point. Each program is simple so that its basic structure
is obvious and is accompanied by a full description of what the program does and
how it does it. At the same time, the programs are designed to be easy to enhance
for better performance. Possible enhancements are discussed for each program,
with many modifications that require only 10 to 50 lines of C code to produce
useful improvements. This is much more rewarding than having to start from
scratch.

To make programs easier to understand and modify, the book uses a subset
of C’s features. C programs are often written in a cryptic style that makes heavy

O xiii

xiv O Introduction

use of features unique to C. Using these features usually produces only a modest
improvement in performance but a heavy penalty in program clarity. This view
may be heresy to some C programmers but will prove eminently practical to many
others, especially those coming to C from another language. Optimization by using
C’s special features is discussed in Chapter 9.

The material presented is substantial. If you do not understand a program
fully at first reading, that is quite natural. Read first for general understanding,
then focus on details as you need them.

The programs are designed to run on the IBM PC under PC-DOS. The nature
of the programs requires that some specific environment be selected, and the IBM
PC has important advantages:

1. It is widely used and is becoming a standard.

2. It is more accessible than a large computer to many readers.

3. It has a good architecture, satisfactory speed, and can use lots of memory.
4. Tt has several good C compilers available (see appendix B).

Only a few changes are needed to make the programs run on other computers
under the MS-DOS operating system. More changes are needed to make them run
under other operating systems, such as CP/M-80, CP/M-86, or UNIX. These
changes are largely confined to Chapter 7.

Audience

O

Readers should be familiar with some programming language and with using a
PC, especially using a text editor and DOS commands such as DIR and COPY. It
is not essential that you have previous experience with C. Programmers with ex-
posure to Pascal, PL/1, or Modula-2 should have little difficulty. Readers with
only BASIC experience are likely to find some features of C puzzling; the examples
in Chapters 1 and 2 should help. My style of creating code, by stressing clear,
readable code over speed, should also help the transition to C.

Available Disk

d

All the programs in the book are available on a disk, ready for editing and com-
pilation. Sinc- manually copying several hundred lines of code is tedious and can
result in errors, ti.c disk is the convenient, safe way to work with these programs.
Just insert the disk and edit one of the programs.

The programs were tested with many of the available compilers. Operating
instructions for compiling and using the programs with various compilers are in-
cluded on the disk.

Compatibility [J xv

The disk includes all the programs in this book plus additional programs.
Library functions for scanning a single directory and for scanning a hierarchy of,
directories are included. These were not included in the book, to keep the book
at a manageable size, but it was decided to keep all useful programs on the disk.
To acquire the disk, send a check or money order for $20.00 to William James
Hunt, Toolbox Disk, P.O. Box 271965, Concord, CA 94527. The last page of this
book has an order form.

What You Need

0 You should get a copy of The C Programming Language by Brian W. Kernighan
and Dennis M. Ritchie (Englewood Cliffs, N.]J.: Prentice-Hall, 1978). While the
book is not a tutorial or a primer, it is the standard reference on C. You may also
want a primer on C; see Appendix D for suggestions. If you are new to C, you
should read one of these primers as you go through this book. "

You will need free access to an IBM PC or some other computer running the
MS-DOS or PC-DOS operating system (Version 2.0 or later). You will neither find
programming enjoyable nor the advice in this book useful if you have limited and
infrequent access to a PC.

Your computer should have at least 192 K bytes of RAM memory. It should
also have either two 320 K/360 K byte floppy disk drives or one floppy and one
hard disk. Appendix A gives some hints to make program development faster.

You will need an editor program to enter new programs and to modify ex-
isting ones. The EDLIN editor provided with MS-DOS is not recommended for
regular use (see Appendix A for alternatives). You also need a good C compiler;
Appendix B discusses specific changes required for a number of C compilers.

A few functions in the book are written in assembler language. The program
diskette contains these functions in source file format as well as in object module
form for several popular compilers. If you have one of these compilers, you will
need an assembler only if you modify these source files.

You will need a linker program to build a complete program from separate
object files. PC-DOS includes a linker that can be used with several compilers.
(Other compiler products include a suitable linker program.)

Compatibility

O All the programs presented have been tested on the IBM PC, XT, and AT models.
The programs have not been tested with the PC jr. but should work if enough
memory is present.

Some hardware-specific functions in Chapter 7 may require revisions for new
PC hardware. For example, the SCREEN module for fast output to the display

xvi

O Introduction

screen works for the monochrome and color graphics adapters. New adapters may
require changes to refresh buffer addresses and status port numbers.

New releases of C compilers may differ in memory layout or in the names
of segments and groups. Calling conventions for functions may also change.

Outline of the Book

0 Chapters 1 and 2 get you started reading and writing C. While they provide a

brief introduction in comparison to that of a primer, they illustrate some features
and concepts that are important in understanding the rest of the book. Chapter 1
gives examples of short C programs and the steps needed to create and compile
them. It shows those parts of C that will be relatively familiar to you. This gives
you confidence that C will be easy to understand.

. Programming languages are never perfect; Chapter 2 discusses the way we
use C to minimize bugs and portability problems. File I/O and bit operations in
C are also covered in this chapter. We also develop some tools and start an object
library.

Chapter 3 presents the VIEW program. It allows us to browse through text
files composed of ASCII characters. VIEW is useful for looking at C source files
as well as text files produced by word processors like WordStar. Techniques for
simple file input and for interactive keyboard and display usage are demonstrated.
Since Chapter 3 is the first chapter to describe a sizeable program, it goes through
the program development process in detail. The following chapters do not repeat
these basic points. Testing the program on a module-by-module basis is empha-
sized here.

Chapter 4 develops another tool for examining data files. This FILEDUMP
program displays a file’s contents in hexadecimal and ASCII formats much like the
dump format of the PC-DOS debug program. This provides a way to determine
the format of any file without any prior knowledge of its content. Since this pro-
gram is closely related to the VIEW program of Chapter 3, Chapter 4 shows how
to make use of an existing program in developing a new, but related, one. This
chapter discusses more aspects of the program development process.

Chapter 5 builds several tools based on sorting algorithms. Two well-known
algorithms—the insertion sort and quicksort—are shown and then made into li-
brary functions that are usable on any kind of data. These library functions are
then used in a simple program to sort lines of ASCII text. Then the technique of
merging is used to handle files too large to fit into RAM memory. The initial
MERGE program is then generalized so that the type of records to be sorted and
the location and type of the keys for sorting are specified when the program is
executed.

Chapter 6 builds a BTREE module for indexed access to data files. This mod-
ule is rather long but provides features such as multiple indexes to a data file,

Themes [xvii

duplicate keys, and variable-length keys. A sample application maintains an index
of correspondence documents by name of addressee, date sent, and subject.

Chapter 7 presents the toolkit used in preceding chapters. While C is ade-
quate for almost all our requirements, a few things require assembler language
functions. Other modules specific to MS-DOS or the IBM PC are presented in this
chapter. Single-key input, screen output, and DOS and BIOS access are among
the modules included here.

Chapter 8 presents a terminal emulator program. The special characteristics
of a real-time program are discussed—for example, unpredictable input from sev-
eral sources with data being lost if the program does no* keep up with all input.
The techniques for handling such problems—polling input status, buffering data
to relax timing requirements, and using interrupt-driven input handling—are
demonstrated.

Chapter 9 covers a few loose ends—for example, using C’s unique features
to optimize execution speed and handling critical errors. It also summarizes the
design philosophy of the previous chapters.

Appendix A discusses compiling and executing the programs we present. Ap-
pendix B lists the C compilers examined and specific changes required for each
compiler. Appendix C explains memory models and their relation to the 8088 ar-
chitecture. A short bibliography in Appendix D provides a starting point for fur-
ther reading.

Themes

O Several themes occur throughout the book. They are listed here to help you un-
derstand the book’s message.

Create Order out of Chaos

The book presents finished, working programs that, I hope, do not contain bugs.
It often looks as though such programs sprang forth from my brain in a complete
and correct form. That is almost never the case. The process usually involves some
dead ends, some backtracking, lots of bugs, and inelegant first tries.

Each chapter presents a topic in orderly way to make it easy to understand.
Do not conclude that program development is a perfectly orderly process with
uniform progress through each stage, however. Every program in this book was
revised several times to make it simpler and more effective.

In spite of these limitations, you should always set goals at each step. Never
start writing a program until you define its function. After you complete the pro-
gram, you may revise the functional specification and rewrite the program. The
cardinal sin is to write a program and then figure out what function it performs.

xviti O Introduction

Keep Lip Your Morale

Writing computer programs can be very hard on your ego and your morale. You
will make errors in design, get the syntax of C statements wrong, and produce lots
of very puzzling bugs in your programs. These problems give abundant and pain-
ful testimony to your lack of perfection before you finally get a working program.
Some people claim to produce working programs without any such problems, but
most just have memory lapses.

You can make the programming process much more pleasant if you break
the problem into small pieces. Any large project can seem impossible if you do not
break it into manageable steps. Write and test programs in small modules so you
get some measure of success at frequent intervals. Simplify the design of a large
program, and do a smaller prototype first.

Use an Experimental Approach

Reading reference manuals and computer documentation is hard, frustrating work.
The information they contain is often ambiguous and incomplete. This is a fact
of life for beginners and old-timers alike. The way to cope with bad documentation
is to perform an experiment. Writing a short C program to see how a feature
actually works is more productive and less frustrating than guessing what a cryptic
description in a manual really means.

Tackle such problems one at a time. It is much easier to understand how a
feature of C or the operating system works if you try it out in a controlled envi-
ronment. Writing a sizeable program filled with unverified assumptions about such
features makes testing unnecessarily difficult.

Learn by Doing

Do not waste too much time at first studying C. Learn a little and plunge in. Start
by reading a C program for general understanding of what it does. Then think of
a small improvement you would like to make. You should be able to find en-
hancements that require adding fewer than ten lines to the program. Concentrate
on understanding how your change will affect the program—what has to be
changed and how you can accomplish the change using C.

Learn C as you need it. Develop a small working vocabulary of C features,
and expand it as needed. You can treat much of C as material to be looked up
when you need it, just as you would unfamiliar words.

Copy Techniques from Existing Programs

When you want to do something new, look through this book for examples that
do something similar to what you want. After you copy a technique several times,
you learn it without effort.

Contents

Introduction

1

xiii

A Quick Tour Through C 1

8

HELLO Program: The Structure of C 1

SUM OF SQUARES Program: Variables, Arithmetic, arid Loops .5
WEATHER Program: Console Input, for Statements,

Variable Addresses, and Symbolic Constants 8

SORTNUM Program: Arrays, Function Return Values, and Pointers
SENTENCE Program: File I/0, Characters, I/O Redirection 12
REVERSE Program: Character Arrays and Strings,

Separate Compilation 15

CURVE Program: Defining Data Types, Using Structures 18
NOT ABS Program: Switch, Break Statements, and More Loops 22
Summary of Definitions and Concepts 24

Adapting C To Our Use 29

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

File I/0: Three Programs to Copy Files 29
ASCII and Binary Files 35
Bit Operations: Cleaning Up Word Processor Files 41

Hexadecimal Notation 44

More Bit Operations and Macros 45

Controlling the Order of Evaluation: Operator Precedence 51
Starting a Toolkit 52

Summary 59

Viewing ASCII Files 61

3.1
3.2
3.3
3.4
3.5

Specifying the VIEW Program 61
Pseudo-code for VIEW 62
Implementing VIEWV 68

The VIEW Program Listing 76
Testing VIEW 92

10

ix

Contents

o

3.6
3.7

Measuring the Performance of VIEW 113
Enhancing VIEW 115

Dumping Files in Hexadecimal Notation 119

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Specifying the FILEDUMP Program 119
Pseudo-code for FILEDUMP 121

The FILEDUMP Program Listing 123
Testing FILEDUMP 131

FILEDUMP’s Performance 135
Enhancements 135

Improving FILEDUMP’s Performance 136
Summary 141

Tools for Sorting 145

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

Internal Sorting Algorithms: Insertion and Quicksort

Generalizing the Internal Sort Functions: memsort 152

Performance Analysis of memsort 157
Enhancements to memsort 158

An Application: Sorting Lines of Text 159

External Sorting Algorithms 166

MERGEI]1 Source Files 170

MERGE2: A Generalized External Sort Program 179
MERGE2 Source Files 179

Measuring MERGEZ2’s Performance 190

Enhancing MERGE2 191

Summary 194

BTREE: An Indexed File Module 197

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Developing the Concepts 197

Functional Specifications for a BTREE Module 201
BTREE Pseuco-code 203

Exceptions and Design Choices 208

BTREE Listings 209

Analyzing BTREE =~ 244

Testing BTREE 247

BTREE Enhancements 247

A Simple Application: Indexing Correspondence 251
Summary 257

A Low-Level Toolkit for IBM-PC-Specific Tools 259

7.1
7.2
7.3

Assembler Language Tools 260
Testing Assembler Functions 274
Adapting the Toolkit for Other Compilers and Assemblers

283

Contents

O xi

7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

TTY

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Using Other Memory Models 288
Supporting swint 289

Accessing DOS 290

Keyboard Input 295

VIDEO Output Functions 300

Direct Screen Output 307

An Elapsed Time Function 318
Generalized File I/O Library Functions 320
Using and Modifying the Toolkit 320
Summary 322

: A Terminal Emulation Program 327

What Terminal Emulation Programs Do 327
A Basic Terminal Emulation Program 329
How TTY1 Performs 332

Improving TTY1’s Performance 337
Specifying the TTY Program 339

TTY2 Source Files: 339

Compiling, Testing, and Measuring TTY2 360
Enhancements 361

Summary 364

Loose Ends and Final Thoughts 365

9.1
9.2
9.3
9.4

Using the Rest of C: Optimization 365
Handling Control-Break Conditions 367
Handling Critical Errors 370

Summary 377

Appendix A Compiling and Executing the Programs 379
Appendix B C Compilers for the IBM PC Environment 383
Appendix C IBM PC Architecture and C Memory Models 389
Appendix D Reference Materials 393

Index to Programs and Illustrations 397

Index 405

I
A Quick Tour
- through C

This chapter shows what C programs look like. The short programs shown do not
perform useful functions, but they illustrate C’s basic features. The book is not a
tutorial on C, but this chapter provides a foundation for later chapters. Vocabu-
lary and concepts r.ceded in the rest of the book are also discussed here. More ad-
vanced features of C are discussed in later chapters.

There is a lot of similarity between different high-level computer languages.
If you are familiar with BASIC, COBOL, PL/1, Pascal, or FORTRAN, you should
be able to recognize the purpose of the features introduced and to relate them to the
corresponding features in the language you know. If you have no previous ex-
perience with C, one of the primers on C listed in Appendix D might make learning
the language easier. If you are familiar with C, this chapter can serve as a review.
You may also be familiar with the terms and concepts introduced, but the chapter
explains how the book uses them.

I.I HELLO Program: The Structure of C

[J The first program is very simple; it displays
hello, world

on the screen. (The program is not an original composition. I took it from Ker-
nighan and Ritchie [1978], hereafter referred to as K & R.) It serves to illustrate the
basic structure of a C program and how to convert it into an executable program.

Figure 1.1 lists the program. Line 1 tells the compiler to use the contents of a
file named stdio.h as additional input to the compilation. The file stdio.h is nor-
mally provided with the compiler product. For now, we consider it as magic we
recite in each C program.

2 O A Quick Tour through C

Figure 1.1 hello.c

1 #include "stdio.h"
2

3 main ()

4 {

5 printf ("hello,")
6 printf (" world")
7]

Lines 3 to 7 define a function named main. Line 3 establishes the function’s
name, and lines 4 to 7 describe what it does. This general format is followed for all
C functions:

name(. . .)
{
what it does
}

As the ellipses indicate, there may be more text that we have not illustrated or
described. C programs are composed of function definitions. Each definition
describes what happens when we call that function. When we execute the HELLO
program, we call the main function. In turn, it may call other functions.

The what-it-does part of a function consists of one or more statements (if the
function does not do anything, there would be no statements). Lines 5 and 6 in the
HELLO program are such statements. Line 5 calls a function named printf. printf
displays the message on the screen. When it finishes, it returns to the point where it
was called: When we call printf, we specify what it is to display. In line 6 we call
printf again with a different message. What printf does depends on the informa-
tion we provide it. This information is called parameters, or arguments.

The printf function is supplied in the standard C library; we do not have to
write it. printf’s use should be documented in your C compiler manual. With this
documentation, we can use printf without seeing how it is implemented.

The statements illustrated in Figure 1.1 have the form

function-name(...);

Later programs show other forms of statements and relate the statements shown
here to a more general form.

1.1 HELLO Program : The Structure of C 1 3

The arguments we use in lines 5 and 6 are character string constants. The for-
mat of such a character string constant is

"printable characters”

Compiling and Executing the HELLO Program

Figures 1.2a-d illustrate the process of preparing the HELLO program on an IBM
PC using the Lattice C compiler. While the details depend on the compiler product
you use, similar steps for editing, compiling, linking, and executing the programs
are followed.

First we type in the C program using a text editor (or a word processor).
When we finish typing the program, we store the text entered in a file. Figure 1.2a
shows the editing process using the EDLIN editor provided with PC-DOS. EDLIN
is used in the illustration since everyone using PC-DOS has it. Any text editor can
be used as long as it produces files of ASCII characters without any special format-
ting information. We refer to the file created as a source file since it is the source for
the compilation step.

The compiler reads the source file and translates the C progran into instruc-
tions and data the IBM PC can execute. Figure 1.2b shows the compile process.
Typing Ic runs the Ic.bat batch file that executes two programs, Ic1 and Ic2. Some
C compilers consist of four separate programs, but the overall result in any case is
to produce executable instructions and data at the end. By convention, C source
files are normally named with a file extension of .c. Some compilers require this
naming scheme. The file produced by the compiler is called an object file.

The compile step translated the source file into executable form, but there is
another step before the program can be executed. The program that we wrote is
not complete because it uses the printf library function. The linking step combines
our object file with any necessary functions to produce a complete program that is
ready to execute. The program is stored in a run file named hello.exe (if your com-
piler package includes a special linker, it may name the run file differently.)

Figure 1.2c shows the linking step. A special object file named cs.obj, sup-
plied with the Lattice C compiler, sets up the environment expected by C func-
tions; it is always the first object file specified in the link command. The last name
on the line specifies that the [cs.lib library is to be searched for any library function
that hello.obj requires.

Now we are ready to execute the program. Type the name of the program'’s
run file to execute it. Figure 1.2d shows execution of the HELLO program. Note
that we need not type the complete file name—the .exe extension is assumed.
When we execute hello.exe, we are calling the main function. C expects to find a
function named main in every program; when we named our function main, we
were saying to the C compiler, “When you execute the program, begin here.”

4 0O A\Quick Tour through C

Figure 1.2 hello.fig

‘J%bw.'\)P—‘

@ ~! O

Figure 1.2 - Creating and

Figure 1.2a - Using an Editor

D>edlin hello.c

New file

®i
l:*#include "stdio.h"
23 ¥
3:*main ()
4:*% [
5:% printf ("hello,") ;
6:* printf (" world") ;
7%)
8 %70

*e

D>

Figure 1.2b - Compiling the Program
D>le hello

D>LC1 hello

Lattice C Compiler (Phase 1) V2.00
Copyright (C) 1982 by Lattice, Inc.
D>LC2 hello

Lattice C Compiler (Phase 1) V2.00
Copyright (C) 1982 by Lattice, Inc.
Module size P=0017 D=000E

Figure 1.2c - Linking the Program
D>link cs hello , hello , nul , lcs

IBM Personal Computer Linker

Executing

Version 2.00 (C) Copyright IBM Corp 1981, 1982,

D> &

Figure 1.2d - Executing the Program
D>hello

hello, world
D>

Hello

1983

