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Preface

The statistical analysis of the duration of life has a long history. The
recent surge of interest in the topic, with its emphasis on the
examination of the effect of explanatory variables, stems mainly from
medical statistics but also to some extent from industrial life-testing.
In fact the applications range much more widely, certainly from
physics to econometrics. The essential element is the presence of a
nonnegative response with appreciable dispersion and often with
right censoring.

The object of the present book is to give a concise account of the
analysis of survival data. We have written both for the applied
statistician encountering problems of this type and also for a wider
statistical audience wanting an introduction to the field.

To keep the book reasonably short we have omitted both some of
the very special methods associated with the fitting of particular
distributions and also the mathematically interesting topic of the
application of martingale theory and weak convergence to the
rigorous development of asymptotic theory. We have also firmly
resisted the temptation to extend the discussion to the statistical
analysis of point processes, i.e. systems in which several point events
may be experienced by each individual.

We thank warmly Ms P. J. Solomon for comments on a
preliminary version.

D. R. Cox

London, March 1983 D. Oakes
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CHAPTER 1

The scope of survival analysis

1.1 Introduction

In survival analysis, interest centres on a group or groups of
individuals for each of whom (or which) there is defined a point event,
often called failure, occurring after a length of time called the failure
time. Failure can occur at most once on any individual.

Examples of failure times include the lifetimes of machine com-
ponents in industrial reliability, the durations of strikes or periods of
unemployment in economics, the times taken by subjects to complete
specified tasks in psychological experimentation, the lengths of tracks
on a photographic plate in particle physics and the survival times of
patients in a clinical trial.

To determine failure time precisely, there are three requirements: a
time origin must be unambiguously defined, a scale for measuring the
passage of time must be agreed and finally the meaning of failure must
be entirely clear. We discuss these requirements in a little more detail
in Section 1.2,

Sometimes we are concerned solely with the distribution of failure
times in a single group. More often, we may wish to compare the
failure times in two or more groups to see, for example, whether the
failure times of individuals are systematically longer in the second
group than in the first. Alternatively, values may be available for each
individual of explanatory variables, thought to be related to survival.
The lifetime of a machine component may be influenced by the stress
exerted on it, or by the working temperature. White blood count is
known to influence prognosis in leukaemia. In clinical practice, it is
quite common for information on 100 or more variables to be
routinely collected on each patient, giving the statistician the
unenviable task of summarizing the joint effect of these variables on
survival.

Survival analysis is properly thought of as a univariate rather than
a multivariate technique because there is only a single response

1



2 THE SCOPE OF SURVIVAL ANALYSIS

variable, failure time, even though there may be many explanatory
variables. Some special problems involving a multivariate response
are, however, discussed in Chapter 10.

1.2 The definition of failure times

We now comment briefly on the requirements for measuring failure
time.

The time origin should be precisely defined for each individual. It is
also desirable that, subject to any known differences on explanatory
variables, all individuals should be as comparable as possible at their
time origin. In a randomized clinical trial, the date of randomization
satisfies both criteria, and would be the normal choice. While it might
be more biologically meaningful to measure time from the first
instant at which the patient’s symptoms met certain criteria of
severity, the difficulty of determining and the possibility of bias in
such values would normally exclude their use as time origin. Such
information might, however, be useful as an explanatory variable.

The time origin need not be and usually is not at the same calendar
time for each individual. Most clinical trials have staggered entry, so
that patients enter over a substantial time period. Each patient’s
failure time is usually measured from his own date of entry. Fig. 1.1
illustrates the calculation.

The evaluation of screening programmes for the detection of breast
cancer provides an instructive example of the difficulties in the choice
of origin. The aim of screening, of course, is to detect the disease at an
earlier stage in its development than would otherwise be possible.
Even in the absence of effective treatment, patients with disease
detected at screening would be expected to survive longer after
diagnosis than patients whose disease is detected without the aid of
screening. This bias seriously complicates any comparison of the
failure times of the two groups. Perhaps the only satisfactory way to
evaluate the effect of screening in reducing mortality is to compare the
total mortality rate in a population offered screening with that in a
population where no screening programme is available.

The time origin need not always be at the point at which an
individual enters the study, but if it is not, special methods are needed.
For example, in epidemiological studies of the effects on mortality of
occupational exposure to agents such as asbestos, the natural
measure of time is age, since this is such a strong determinant of
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Fig. 1.1. Experience of ten individuals with staggered
entry and follow-up until 1980: x, death; O, censor-
ing. (a) Real time; (b) time, ¢, from entry into study.

mortality. However, observation on each individual commences only
when he starts work in a job which involves exposure to asbestos.
Likewise, in industrial reliability studies, some components may
already have been in use for some period before observation begins.
We refer to such data as ‘left-truncated’ and the appropriate methods
are discussed in Chapter 11.

Often the ‘scale’ for measuring time is clock time (real time),
although other possibilities certainly arise, such as the use of
operating time of a system, mileage of a car, or some measure of
cumulative load encountered. Indeed, in many industrial reliability
applications, time is most appropriately measured by cumulative
usage, in some sense. Or failures may consist of flaws in textile yarn,
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when failure ‘time’ would be the length measured up to the first flaw.
There are interesting applications in geometrical probability, where
the failure time denotes the length of a line segment contained in a
convex body. About the only universal requirement for failure times is
that they are nonnegative.

One reason for the choice of a timescale is direct meaningfulness for
the individual concerned, justifying the use of real time in investigat-
ing survival in a medical context. Another consideration is that two
individuals treated identically should, other things being equal, be in
a similar state after the lapse of equal ‘times’; this is the basis for the
use of cumulative load encountered in an engineering context. If two
or more different ways of measuring time are available, it may be
possible, having selected the most appropriate timescale, to use the
other ‘times’ as explanatory variables.

Finally, the meaning of the point event of failure must be defined
precisely. In medical work, failure could mean death, death from a
specific cause (e.g. lung cancer), the first recurrence of a disease after
treatment, or the incidence of a new disease. In some applications
there is little or no arbitrariness in the definition of failure. In others,
for example in some industrial contexts, failure is defined as the first
instance at which performance, measured in some quantitative way,
falls below an acceptable level, defined perhaps by a specification.
Then there will be some arbitrariness in the definition of failure and it
will be for consideration whether to concentrate on failure time or
whether to analyse the whole performance measure as a function of
time.

1.3 Censoring

A special source of difficulty in the analysis of survival data is the
possibility that some individuals may not be observed for the full time
to failure. At the close of a life-testing experiment in industrial
reliability, not all components may have failed. Some patients (many,
it is to be hoped) will survive to the end of a clinical trial. A patient
who has died from heart disease cannot go on to die from lung cancer.
An individual who is observed, failure-free, for 10 days and then
withdrawn from study has a failure time which must exceed 10 days.
Such incomplete observation of the failure time is called censoring.
Note that, like failure, censoring is a point event and that the period of
observation for censored individuals must be recorded.



14 OTHER METHODS OF ANALYSIS 5

We suppose that, in the absence of censoring, the ith individual in a
sample of n has failure time T}, a random variable. We suppose also
that there is a period of observation c; such that observation on that
individual ceases at c; if failure has not occurred by then. Then the
observations consist of X, = min(T;, c,), together with the indicator
variable V; = 1 if T, < ¢, (uncensored), ¥, =0 if T; > c; (censored). We
refer to the c; of individuals who in fact are observed to fail as
unrealized censoring times, as contrasted with the realized censoring
times of the censored individuals. The term potential censoring time is
usual when c; is considered without regard to whether censoring or
failure occurs.

In some applications, all the ¢; will be known, as for example if the
only cause of censoring is the planned ending of follow-up at a
predetermined time. Another example is so-called Type I censoring,
in which all the c; are equal, ¢; = ¢, a constant under the control of the
investigator. In Type II censoring, observation ceases after a prede-
termined number d of failures, so that ¢ becomes a random variable.
Type II censoring is a useful technique for economical use of effort in
industrial life-testing. Other forms of so-called random censorship are
possible. A crucial condition is that, conditionally on the values of any
explanatory variables, the prognosis for any individual who has
survived to ¢; should not be affected if the individual is censored at G
That is, an individual who is censored at ¢ should be representative of
all those subjects with the same values of the explanatory variables
who survive to c.

The simplest way to ensure this is to take the ¢; to be in principle
predetermined constants, and this viewpoint will be adopted through-
out most of this book. Note, however, that often the ¢; will not be
known to the investigator in advance, and that the unrealized ¢
corresponding to observed failures may never become known. The
above condition is also satisfied if the potential censoring times are
random variables c;, which are independent of the T,. Type II
censoring is an example of a more general scheme in which, loosely
speaking, censoring can depend on the past history, but not the future,
of the whole process. We may call this evolutionary censoring.

1.4 Other methods of analysis

Besides the techniques to be discussed in this book, a number of other
approaches have been used to analyse survival data. Perhaps the
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simplest method, much used by clinicians, is to dichotomize accord-
ing to survival or nonsurvival at a critical period such as five years.
Comparisons of the five-year survival rates of subjects in various
groups can be made using techniques for binary data. Although this
approach is often quite satisfactory, it has two major disadvantages.
Concentration on a single point of the survival curve necessarily
wastes some information. More seriously, calculation of survival
rates as simple proportions is directly possible only when no
individuals are censored during the critical period. This restriction
can lead to some absurdities; see Exercise 1.1.

With survival dichotomized as above, and with quantitative
explanatory variables, discriminant analysis has sometimes been used
to identify variables that are related to survival, although such use of
discriminant analysis is better regarded as an approach to binary
logistic regression. Discriminant analysis, can, however, be a useful
way of sifting through a large set of variables to determine a few
variables or combinations of variables which can then be considered
in more detailed analyses. By itself, discriminant analysis provides
little insight into the way the explanatory variables affect survival.

Reduction to a binary response is most useful when the survival of
each individual is easily classified as either very short or very long.
When the potential censoring times are related to the explanatory
variables, discriminant analysis will give biased results. Note also
that the inclusion of the actual failure time as an explanatory variable
in a discriminant analysis would be a serious error, as the failure time
is part of the response, not part of the factors influencing response.

In the absence of censoring, the dependence of failure time on the
explanatory variables can be explored through multiple regression.
Because failure times are never negative and often have highly skewed
distributions, preliminary transformations of the data such as the
logarithm or reciprocal are often used. The log transformation is
closely related to the accelerated life model, discussed in Chapter 5.
Either transformation may give undue weight to very short failure
times, which will have high negative logarithms and high positive
reciprocals.

1.5 Some examples

We now describe in outline three examples that will be referred to a
number of times throughout the book. Other examples will be
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introduced at the appropriate point in the development. Some of the
examples, especially the first, have been widely used in the literature to
illustrate alternative techniques.

Example 1.1 Leukaemia: comparison of two groups

Table 1.1 (Gehan, 1965, after Freireich et al.) shows times of remission
(i.e. freedom from symptoms in a precisely defined sense) of leukaemia
patients, some patients being treated with the drug 6-mercaptopurine
(6-MP), the others serving as a control. Treatment allocation was
randomized. Note the great dispersion and also that censoring is
common in the treated group and absent in the control group. It is
important to have methods of analysis that are effective in the
presence of such unbalanced censoring. In fact, the trial was designed
in matched pairs with one member of the pair being withdrawn from
study when, or soon after, the other member comes out of remission.
This is an aspect we shall ignore.

Example 1.2 Failure times and white blood count, WBC

Table 1.2 shows, for two groups of leukaemia patients, failure time
(time to death) in weeks and white blood count,wBc (Feigl and Zelen,
1965). The formal difference from Example 1.1 lies partly in the
presence of a continuous explanatory variable, wBC, and partly in
that the division into groups is based on an (uncontrolled) measure-
ment for each individual rather than on a randomized treatment
allocation.

Example 1.3 Failure times of springs

Table 1.3 illustrates an application from industrial life-testing kindly
supplied by Mr W. Armstrong. Springs are tested under cycles of
repeated loading and failure time is the number of cycles to failure, it
being convenient to take 10° cycles as the unit of ‘time’. Here 60
springs were allocated, 10 to each of six different stress levels. At the
lower stress levels, where failure time is long, some springs are
censored, i.e. testing is abandoned before failure has occurred.
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1.6 COMPUTING 9

Table 1.2 Failure time and white blood count (Feigl and Zelen, 1965)

(AG positive), N = 17 (AG negative), N = 16
White blood count,  Failure time White blood count,  Failure time
WBC (weeks) WBC (weeks)
2300 65 4400 56
750 156 3000 65
4300 100 4000 17
2600 134 1500 7
6000 16 9000 16
10500 108 5300 22
10000 121 10000 3
17000 4 19000 4
5400 39 27000 2
7000 143 28000 3
9400 56 31000 8
32000 26 26 000 4
35000 22 21000 3
100000 1 79 000 30
100000 1 100 000 4
52000 5 100 000 43
100000 65

1.6 Computing

Some of the simpler techniques to be described in this book can be
applied to modest sets of data using a programmable (or even
nonprogrammable) pocket calculator. If large amounts of data are
involved or if some of the more elaborate methods of analysis are
contemplated, use of the computer is essential and, under the working
conditions of most statisticians, the writing of special programs is
impossible on other than a very small scale. Therefore, the availability
of packaged programs is crucial.

All aspects of computing change so rapidly that a very detailed
discussion is not appropriate in a book like this. There follow a few
notes on the position at the time of writing, 1983.

The packages GLM (Release 4), BMDP and SAS contain programs for
many of the analyses described in this book. Points to watch in the
choice of program include the facilities available for checking the



