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Preface

This volume contains the proceedings of the Conference on

Rational Approximation and Interpolation, which took place December

e nae et
12-167-1983 at the University of South Florida, Tampa, Florida. The
conference was held under the auspices of the U.K. - U.S. Cooperative

Science Program, an informal agreement between the U.S. National
Science Foundation and the U.K. Science and Engineering Research
Council to promote and support mutually beneficial scientific
activities. The primary purpose of the conference was to bring
together pure and applied mathematicians, physicists and engineers

to exchange information and set objectives for future research efforts
dealing with rational approximation and interpolation.

P.R. Graves-Morris and E.B. Saff were the primary organizers
of the conference. There were 28 participants from the U.S., 14 from
the U.K. and 14 others representing 11 additional countries. The
number of conference members was kept limited so as to promote dis-
cussion among members with diverse backgrounds, in accordance with
the aims of the U.K. - U.S. Cooperative Science Program.

The contributions to this volume include original research
papers as well as a few survey articles. All of these papers were
refereed and we are grateful to many advisors for their diligence.
It is hoped that this volume reflects the breadth of interest in
rational approximation and interpolation, and serves as a source of
inspiration for further research.

We wish to thank the U.S. National Science Foundation and the
U.K. Science and Engineering Research Council for sponsoring the
participants from their respective countries. We are also indebted
to the University of South Florida (USF) Division of Sponsored
Research for the support of the other conference partcipants. The
conference planning and activities were facilitated by the USF Center
for Mathematical Services, the USF organizing committee consisting
of Prof. M. Blake and Prof. J. Snader, and the conference co-host,



e secreta '1a1 help provided'by Mary Bax‘ol:. is alao ide ¢

C J.ad as were the efforts of several staff members arid s
he HSF'*Dep»artment of Mathematics. We are further indebted
-::il companies in the Tampa area for having provided addiﬁi

pport for the conference functions.
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FABER OPERATOR "

3

J. M. Anderson*
Mathematics Department
University College
London W.C.,1.E.6.B.T.
L. ’

The boundedness of the Faber operator T and its 1nverse

considered as mappings between various spaces of functions, 1s

. The relevance of this to problems of approx1mat10n,by poly-

wmi 1s or by rational functions, to functions deflned on certaln com-
q subsets Vot - 1s explalned

i :
¥
i t

s Introduction

: ‘ Let D denote the closed unit dlSk {w: weg, [w] S, fand
' the well-known disk algebra of functions analytlc insthe intesh
fior. D° of D and continuous on D, with the supremum norm. The sets
1 _we wish to consider are compact subsets of ¢ whose interior K°‘
{”‘a.51mp1y connected domaln ‘and whose boundary 3K is a rectlflable
dan curve., . The correspondlng algebra is denoted by A(K).
tAssoc1ated with K there is a sequence of polynomials’ {Fh(z)}f

b ?.ﬁolinomials} . These are defined as follows. Let =z = y(w) be
Riemann mapping function of ¢\D onto ¢\K with ¢(=) = =, of the
i ;

}
e |
i

| {z = lw‘(‘-wj = ow + bo":+: Z

"he ﬁumber || is called the transfhnlte dlameter of VK. It is
i?tly p051t1ve for the domalns =K we are con51der1ng.' We shall

'The$author thanks the Department of Mathematics of the University of

alifornia at San Diego for 1ts kind hosp1ta11ty while this report was
belng written. 3 ’




assume, by scaling and rotation, if necessary, that o = 1. The Faber
polynomials Pn(z) associated with K are defined by

Pk - T n o @D, s,

or, alternatively, by

St wiy' (W)

Fn(Z) = m‘/]‘w'=1 m dw .

To see that these are indeed polynomials we note that

o LA CONP
s flwi=1 (b)) T

dk
= B_(2)
dz 1 z=0

For k = n the right side above is n!, since o =1 and for k > n

it is zero. Thus Fn(z) is a monic polynomial,

Fn(z) = z™ + lower order terms .

Let 1n(n) denote the set of all polynomials of degree at most n

©

and set I = ngl T(n). The Faber operator is defined, initially
on 1, by

=1 W)y ' (w)
(1.1)  (Tp)(2) = 5z flwl=1 RO OO av

Note that if p(w) = w® then (Tp)(z) = F (z). Clearly, T(m(n)) =

n(n) and the mapping
T: 1(D) — IN(K)

is injective. Here 1n(D) and 1n(K) denote I considered as a sub-
space of A(D) or A(K). Sets K (of the kind we are considering,
of course) where the operator T is bounded are called Faber sets.
For the moment we are considering only the supremum norms on A(K)

and A(D) respectively and so T is bounded if and only if

ITell, < ITH . lpl, -

The bounded operator T, given by (1.1) can be extended to a
bounded linear mapping of A(D) into A(X) given by



B o) - A ftl . L0 (0 gy
w =

Y(w)-z

This operator, again denoted by T, is injective. This follows from
the fact, established in [13], §3, that, if f € T(A(D)), then we may
associate with f a Faber expansion

) arn
o i

gath f(z) =0 if and only if a, = 0 for all k > 0

Care must be taken with formula (1.2) since in general f(w) is
defined only for |w| <1 and ' (w) only for |w| > 1. It is here,
for example that we make use of the fact that 3K is rectifiable so
that ¢ ' € H1 ([8] Theorem 3.12). Since the boundedness or unbounded-
ness of T depends only on its behavior on a dense set, namely on n,
we need consider (1.2) only for functions which are defined for [w| > 1

1 to be relaxed some-

as well. This might permit the condition v¢' € H
what, by the use of Abel limits, say; but this seems of little interest.

-1

When K 1is a Faber set the inverse T of T, defined on the

range of T, 1is given by

=X o (£ou) (w)
(T8 () = 57 flw|=1 L2 W) gy

for ¢ € D°. For |z| =1 this would be the Hilbert transform of the
composite function (fey)(w). The mapping T_1 is bounded if and only
if T is surjective and in that case T is an isomorphism between
A(K) and A(D). Such a set K for which T and T-1 are bounded is
called an inverse Faber set. Of course, T is a Banach space isomor-
phism and not an algebra isomorphism; products are not preserved.

2. Polynomial and Rational Approximation

We define, as usual, the best polynomial approximation En(f) and
the best rational approximation rn(f) to a function f(z) ¢ A(K) by

E,(£) = B (£,X) = inf {|£-p ll,, p, € 1(n)}

€ R(n)} .

rn(f) rn(f,K) inf {Hf-rnHm, T

n



= R(n, K) denotes the set of ratlonal functlons of degre
maét n Aw1th poles ofF K The - Faber operator (1h2) maps R(n D) ont
Thls follows from the elementary contour integral calculatlo

f ; [w) dw  _ ‘J)'(Wk) '4
|W|'R>1 y(W) Z W-wyp  z=plwy) C

i

taons, but ‘we state it as a theor@m Since it shows why 1nverse Faber
sets are of interest. ; { ; g

Theorem 1. Let K be an 1nverse Faber set. 'Then

E (£,K) < cE (T <cE kf X

et S = ekt ﬁ
rn(f’K) ad Tn » ___C'rn:(f’K) )

i jall <f € A(K),  -Here. c ii’i generic constant, not neCesSafiLz'th&
~ same at each occurrence. N
1 :

If g(w) € A(D) has modulus of continuity w(s) defined by

‘0(8,8) = max {[g(w))-gw,) |, wy,w, €D, [w -w,| < 6}

§

Ean,D? <c w(%,g) .

* Hence if K is an 1nverse Faber set En(f,K) is precisely ofrthef‘
order of w(%,T'lf)._ 5
To get a reasonably good polynomial approx1mat10n to g(w) = E akwg
: 1n‘ A(D), K8vari has shown that we may take the de la Vallée- P§u251n‘5

‘means, defined as follows. Set

: n ~_ 2n-1
s, (W) = ,Z DA NGRS PIENGR
k=0 =n

vNote that V (w) is a polynomial:of degree at most 1
p 367) :

gVl < 4B (g,D) .

In most cases, for example when dealing with 1ip a problems, the




