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FOREWORD

Why is identifiability receiving so much attention? There
are two main reasons in my opinion. The serious one is
that it is of great practical importance. Those involved in
estimating parameters from measurements would of
course like to know whether they stand any chance of
succeeding. Whenever a model is not uniquely
identifiable, there are several values of the parameters
that correspond to exactly the same input-output
behavior; and the very meaning of an attempt to
estimate them is questionable, although we shall see in
the sequel that there may still be some hope. A less
serious (but very important!) reason is that it is a
fascinating subject. Many researchers who planned to
give it only a passing thought have found themselves
trapped in a long-term project. Part of the attraction
comes from the fact that the basic problem is very simple
to explain, part from the fact that no one can claim to
have solved it definitively.

The idea of this volume took shape at York during the
7th IFAC/IFORS Symposium on Identification and
System Parameter Estimation in July 1985. Many of
those working in the field of identifiability were present,
and they shared the feeling that the subject was now
mature enough for a coordinated presentation. Papers
given at York form the backbone of the book. They have
been edited, updated and significantly expanded. One
paper has been written especially for the occasion. All
the authors were aware of the subjects that were to be
treated by the other contributors . They were asked to
take advantage of the availability of the conference
preprints and send each other suggestions for
improvement and for maximizing complementarity.

Chapter 1, by Godfrey and DiStefano, is a tutorial that
recalls the basic methods for structural identifiability
testing. In addition it provides tools that can be used to
obtain bounds on the possible values of unidentifiable
parameters.

Chapters 2 and 3 are devoted to linear time-
invariant models. Chapter 2, by Delforge, d'Angio
and Audoly, presents methods that are especially
interesting when dealing with large-scale models and
proposes conjectures on global identifiability deserving
further consideration. Chapter 3, by Chapman and
Godfrey, addresses the problems of initial model
selection and of generating the set of all models having
exactly the same input-output behavior.

Chapters 4 and 5 deal with nonlinear models.
Chapter 4 , by Vajda, gives a finite algebraic condition
for the structural identifiability of the parameters of a
class of polynomial modeis. It also addresses the
detection of dependences among the parameters that
can result from the effect of measurement noise even
when the model considered is structurally identifiable.
When such dependences occur, the proposed method

suggests simplifying assumptions for removing the
ambiguity. Chapter 5, by Lecourtier, Lamnabhi-
Laggarigue and Walter, describes in a tutorial way
various methods, based on recent results on Volterra
and generating power series approaches, that can be
used to test nonlinear models for structural identifiability.
Linear time-varying models and bilinear models
are treated as special cases.

Chapter 6, by Chavent, is concerned with infinite-
dimensional models, such as those described by
partial differential equations. It investigates the relations
between identifiability and the well-posedness of the
estimation problem.

Chapter 7, by Lecourtier and Raksanyi, describes the
facilities offered by computer algebra for performing
the algebraic manipulations required for testing a model
for structural controllability, observability, identifiability or
distinguishability. It also presents interesting conjectures
on the relations between the global injectivity of an
application and the global properties of its Jacobian.

Chapters 8 to 11 are devoted to the relations
between identifiability. and parameter
uncertainty. Chapter 8, by Cobelli and Toffolo,
describes methods that can be used to estimate
parameters even when the model proves to be
structurally unidentifiable. Chapter 9, by Hadaegh and
Bekey, investigates the consequences of the fact that the
model is only an approximation to the real system under
study. Chapter 10, by Happel, Walter and Lahanier,
shows by a realistic chemical example how it may be
possible to obtain quantitative information on the
parameters of interest even when there are several
competing model structures that are neither uniquely
identifiable nor distinguishable. Finally Chapter 11, by
Walter and Pronzato, is devoted to robust experiment
design, viewed as the maximization of some measure of
identifiability.

| sincerely believe that the book as it stands gives a
more comprehensive presentation of identifiability than
could have been written by any of the authors alone. |
hope you will share this view.

Eric Walter
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TUTORIAL

Chapter 1
IDENTIFIABILITY OF MODEL PARAMETERS

K. R. Godfrey* and J. J. DiStefano, III**

*Department of Engineering, University of Warwick, Coventry CV4 7AL, UK
**Biocybernetics Laboratory and Departments of Computer Science and
Medicine, University of California, Los Angeles, CA 90024, USA

Abstract.

The problem is whether the narameters of a model can be identified

(uniqueTy or with more than one distinct solution) from a specified input-output

experiment.

there are several approaches for identifiabilit
structural, deterministic or a priori identifia

If perfect data are assumed, and the models are linear and time-invariant,

y analysis, alternatively referred to as
bility analysis, and five such approaches

are described. Only one, based on the Taylor series expansion of the observations, is
directly applicable to nonlinear or time-varying models.

When a model is unidentifiable from a proposed experiment, physically based constraints
on the model often provide a means of computing finite bounds for the parameters
(interval identifiability). This is illustrated for the class of Tinear, time-
invariant models in which the svstem matrix is of compartmental form. Under certain
conditions, model parameter intervals are sufficiently small for all practical purposes,

and they are thus called auasiidentifiable.

The identifiability question in the presence of real, noisy data, often referred to in
the Titerature as numerical or a posteriori identifiability, is classified and treated
as a separate problem. 1In the context of parameter estimation, the numerical identi-

fiability problem is the same as the well kn

own and Tong studied problem of parameter

estimation accuracy or precision, given that the parameters are known to be structurally
identifiable. Thus, the identifiability question arises as an issue separate from para-
meter estimation in the classical or general sense only in the context of specifically
structured models; only in this topological sense is it new or different.

Ke¥words. Identification; Laplace transforms; Linear systems; Modelling;
ultivariable systems;

Nonlinear systems;
Time-domain analysis.

1. INTRODUCTION

The notion of identifiability is fundamentally a
problem in uniqueness of solutions for specific
attributes of certain classes of mathematical
models. The identifiability nroblem usually has
meaning in the context of unknown model para-
meters, although it occasionally has had other
meanings. The usual question is whether or not

it is possible to find a unique solution for each
of the unknown parameters of the model, from data
collected in experiments nerformed on the real
system. It is clearly a critical aspect of the
modelling process, especially when the parameters
are analogs of physical attributes of interest

and the model is needed to quantify them. Identi-
fiability analysis is normally used to determine
the extent to which a particular model is suitable
for reduction of data from a specific parameter
estimation experiment. As a consequence, it is
also of significant value in experiment design.

If the model is deterministic and the data are
noise-free, the problem is generally a nonlinear
algebraic one and, unfortunately, solution of this
algebraic problem, as we see below, is generally
both nontrivial and nonunique for all but the
simplest of models. 1In the presence of real, noisy
data, the problem is compounded. Nevertheless,
structural identifiability conditions for the noise-
free case are minimal, necessary conditions for
achieving a successful estimation of model para-
meters of interest from real input/output data.

Parameter estimation; State-space methods;

Identifiability_analysis was put on a formal basis
by Bellman and Rstram (1970), although specific
models were considered a good deal earlier than
this, e.g., Skinner et al (1959). Bellman and
Rstrém describe this as struotural identifiability,
and the term a prior: identifiability  also

has been used auite widely, on the grounds

that the analysis can (and should) be done before
a proposed experiment is carried out. The term
deterministic identifiability also has been pro-
posed, in an attempt to circumvent certain inad-
equacies of the adjective "structural" in cases
where identifiability properties are dependent on
the form of the input, normally considered to be
an independent variable in a dynamic system model.
These issues are treated anew in Section 3.1.

The question of identifiability in the presence
of noisy data has come to be known as the
numerical Or a posteriori identifiability problem.
In the context of model parameter estimation, this
is none other than the classical problem of para-
meter estimation accuracy (precision) in disguise.
lle address the noise-free problem as one that must
be resolved, ascertaining identifiability under
ideal circumstances, prior to attemnting the
usually difficult problem of parameter estimation
with real data. The latter issue is addressed in
Section 5.



2. BASIC CONCEPTS AND IDENTIFIABILITY
ANALYSIS FOR NOISE-FREE LINEAR TIME-
INVARIANT MODELS

2.1 Basic Concepts and Linear Models

Before turning to formal definitions, we review the
basic concept and models, for linear deterministic

systems, and present several examples to illustrate
some of the subtleties of the identifiability con-

cept.

The following simple first-order model is adapted
from Bellman and Astrom (1970):

X(t) = - D]X(t) + pzu(t) s (1)
x(0) =0 (2)
Y(t) = pax(t) . (3)

The model has three unknown parameters: Pp > Py s
Py - For any known u , the explicit solution
of equations (1)-(3) is:

i -p1(t-1:)
J’ e u(t)dr . (4)

y(t) = pypy

If the input is an impulse u(t) = §(t) ,
_p1t
y(t) = PoP3€ . (5)

It is well known that a semilogarithmic plot of
the data, represented as y(t) for this model,
yields the coefficient A = PoP3 and exponent

A= Py of this model. Thus only Py and the
product PoP3 can be determined and not p, or
P3 » i.e. the model is unidentifiable. This is

also clear from equation (4) for any known wu(t) .
If p, or py were known, or if a unique

functional relationship between Py and py were

known, all parameters could be uniquely determined
from y(t) , and we could say the model (or model
parameters) is (are) uniquely (globally)
identifiable.

This result generalises quite easily for linear
constant coefficient systems. A system of n
first-order linear ordinary differential equations,
depending on a set of P unknown constant para-
meters PysPgs-cvs Pp 5 My be written conven-

iently in vector-matrix form as

X(t,p) = A(p)x(t,p) + B(p)u(t) (6)
with

x(07,p) = X4(P) (7)

¥(t;p) = C(p)X(t,p) - (8)

Suppressing the arguments, the n state variables
of the model are denoted by the vector

X 2 [xXy Xy .o
given by (7); u = Cuy Uy ... ur]T is the
vector of r known inputs, y = [y] Yo ....ym]T

is the vector of m output (measurement) variables
of the model and A , B and C are constant
matrices of appropriate dimension, each consisting
of some or all of the unknown parameters

RE [p-l Py «-- pP]T . The superscript T repre-

sents the vector transpose operation.

oy anT , with initial conditions

2.2 The Laplace Transform or Transfer
Function Anproach

It is convenient to employ the Laplace transform
of equations (6)-(8) for further analysis of the
identifiability properties of linear constant
coefficient models. lle assume x,(p) = 0 here,
for convenience, but hasten to emphasise that the
approach applies for any initial or other boundary
conditions. With Xg = 0,

¥(s,p) = C(p)IsI-A(p) 17 B(P)U(s) . (9)

The identifiability properties are established by
examining the expressions in the powers of s in
the numerators and denominators of the measured
outputs, together with any other information
available about p .

A parameter p. is uniquely (globally) identi-
fiable from a det of measurements yk(tsp)
k=1,2 ... q if it can be evaluated uniqgely
from the equations for yk(t,E) , plus any other

information about P 3 it is locally identifi-
able from yk(t,E) if it has a countable number

(2 1) of solutions or nonuniquely identifiable
if this number > 1 , while it is unidentifiable
from yk(t,E) if it has an infinite number of

solutions. If all p, of a model are identifi-

able, the model is said to be identifiable. The
definitions are easily extended for subsets of

the parameter vector p = [p] Py wnnn pP]T

Also, it is often of interest to know which
combinations of individually unidentifiable
parameters are identifiable (uniquely or other-
wise). We formalise and extend these definitions
in Section 3.1, following presentation of several
examples that illustrate specific problems.

Identifiability analyses of linear, single-input,
single-output (SISO) models may be performed
directly from the impulse responses. These
generally have the form

n
y(t,p) = = Ak(E) exn[xk(R)]t . (10)
k=1
The n coefficients Ak and n exponents A

are tynically determined by fitting this model
output function to the data in a least squares
sense and the 2n relationships among the Ak s

A and P; determine the extent to which the
p; are identifiable.
Taking the Laplace transform of equation (10) for
the case with n =2 and distinct eigenvalues,
A A
i 2
Y(s,p) = ¥ 5o
3 A.l S )\2
(A1+A2)s - (A1x2+A2A])
2
s -(A1+A2)s + A9

Bis + B
1 2 (1)

m

2z, .
S +m1$+a2

If there are no common factors in these numerator
and denominator polynomials, it is clear that all
of the 2n o and B coefficients (often called
moment invariants) can be determined from the
experiment (data), just as all of the 2n co-
efficients Ak and A of the sum of expo-



nentials solution can be determined from the
y(t,p) data.

Identifiability has to be qualified as being for
almost all parameter values. For example, partic-
ular (isolated) combinations of parameter values
or particular input functions which give rise to
pole-zero cancellations in Y(s,p) do not invali-
date the general analysis.

The following model is used to illustrate many of
the concepts and problems introduced in this and
the next several sections:

1B 22| 1 1 0y
+ (12)

2

= (13)
Y 0 CZJ sz
It is easy to show that the transfer function
matrix for this model is:
H(s) = C(sI-A)"'B
_[Y7(s)/U;(s) Y1 (s)/Us(s)
Yp(s)/Up(s)  Yp(s)/Uy(s)
Ciby(s-azp)  cybyay,
(14)

YO czb]a21

where A(s) = 52-(a1]+a22)s+a11a22-a12a2] « {15)

Cobp(s-ayg)

We now consider several individual experiments in
turn.

Experiment 1: SISO Case. Uy #0, u, = 0 and

only y;_is measured. From equations (14) and
(15),
S+8;
Yi(s) = Ky ———Uqy(s) (16)
i S +u1s+a2 3 ’

where K.I 5 81 s o and a, are assumed known

and, from equation (14)

¢iby = K (17A)

29 = - (178)
while from equation (15),

ayy = -ap + B (18A)

DL B-I(a-I-B-I)-aZ - (188B)

Thus from this experiment a11s 39 and the pro-
ducts c1b] and 81081 are uniquely identifiable,
but the parameters P and a,, are unidenti-

fiable individually. It is of interest to see
whether a1 and a5 could be identified by

either observing an additional output or by stimu-
lating an additional input.

Experiment 2: Single-Input Dual-Output. uy £0 ,
u =0, y; _and Yo Mmeasured. From the transfer

function matrix (14), the additional observation
is of the form

Ko

Yo(s) = — (19)
2 S +cx-| S+(>L2

so that the extra equation, in addition to
equations (17) and (18), is

CPyay = Ky
which only gives an if czb]

(20)
is known.

Experiment 3: Dual-Input Single-Output. U #0 ,
U, #0 3 Yo _not measured. If the two test-

inputs are applied at different times, so that
the two responses are completely distinguishable,
then the extra equation is

c]bza]2 = K3 (21)
where K3 is a known constant. In this case,
g, could be found only if c]b2 were known a

priori. If, on the other hand, the perturbations
are applied simultaneously, then from equations
(14) and (15),

sb, U, (s)-a,,b U, (s)+a;,b,U,(s)
Y(s) = ¢ 11 22°1°1 122272°%) )

4

s -(ayy%agy)stagyag, a3y

lle now distinguish between two different input
types and two different corresponding identifi-

ability results. If the two input waveforms are
the same, the numerator gives c]b] and
(-c1b1a22+c1b2a]2) , providing neither a,, nor
ay, individually. But, suppose the input wave-
forms were different, e.q., with u (t) a

unit impulse and uz(t) a unit step, so that

2
b]s -b]a225+b2a]2

Yi(s) = ¢ - (23)

7
sts -(agqtagy)s+ayjag,-ay 53,

Now the numerator gives c]b] and Ly and, if

c1b2 were known, a, -

Remark 1: The example illustrated in Experiment
3 7s imnortant because it illustrates that, for
linear systems with more than one input, identi-
fiability results may depend on whether the in-
puts are applied simultaneously or separatesly.
And, if they are applied simultaneously, the
result also can depend on the shape of the input
waveforms. Thus, for multiple inputs, it is
essential to examine the Laplace transform of the
observations (available to the experimenter)
rather than just the individual entries in the
transfer function matrix.

Remark 2: A1l of the above examples have illus-
trated either unique identifiability or unidenti-
fiability results. One way in which our two-state
example can give a locally identifiable (nonunique
result is when the denominator of the output trans
form has intrinsic parameters as its roots, in
which case they are indistinguishable. Consider
the following example.

Experiment 4: SISO, up £0, u, =0, yy _not

measured; prior knowledge that 310.=0 . From
equations (T4) and (T5),




b
Y,(s) = _ v Uy (s) (24)
(s-ay9 }(s-25p)

and we see that intrinsically unknown parameters
a and a9 cannot be distinguished from the

denominator, 1i.e. an and a,, are locally

identifiable, with two solutions, from this experi-
ment. For a system with three or more states,
there are many other possibilities for non-unique-
ness; see Section 2.7 for an example.

Remark 3: The Laplace transform method is con-
ceptuaTTy simple and derivation of the equations
relating observations to system parameters is
straightforward. Unfortunately, these equations
are not lTinear so that it is difficult to see
whether there are multiple solutions or whether
redundancy exists. It is not clear how to modify
the model structure, input and observed variables
to achieve identifiability for a confiquration re-
sulting in unidentifiability and it is necessary
to re-work for each trial modification. No con-
sistent simple structure carries over from one case
to another, so that it is difficult to generalise
conclusions drawn from specific cases.

Other examples of the Laplace transform approach
are given by Skinner et al (1959), DiStefano et al
(1975), Milanese and Molino (1975), Cobelli et al

(1979b), Norton (1982) and Godfrey (1983), Chapter6.

2.3 Taylor Series Expansion of the Observations

In this approach, the output waveforms are expanded
in a Taylor series about t = 0%, the successive
terms of the expansion being expressed as functions
of the model unknowns (Pohjanpalo, (1978)). Spec-
ifically, for an observation yi(t) 8

2
yi(t) = y;(0%) + £7;(0%) + 3+ ¥, (0%) +... (25)

Successive derivatives are, in principle, measurable
and contain information about the parameters to be
identified. If the Laplace transform of equation
(25) is taken,

Yi(s) = y;(0%) + gzyi(o+) " :%y}(o+) +... (26)

from which it may be seen that the test is equiva-
lent to expanding the Laplace transform of the ob-
servation vector in a power series in s~

To illustrate the approach, consider again Experi-
ments 1 and 2 above, with only input 1 applied
(u2 = 0) and let the input be impulsive, u1(t) =

D.s(t) with D known. This input can be incor-
porated as an initial condition, so that the
equations may be written

il(t) = apyXq(t) +a;%,(t) , t >0 (27A)

X,(t) = A% (t) + aynx,(t) 5 t >0 (27B)

with initial conditions x,(0%) = b;D (28A)
+

x,(07) = 0 . (28B)

From equation (27A),

x](0+) a]1x](0+) + a]2x2(0+)

= a;yb;D (29A)

and similarly from equation (27B),
%,(07) = a,b,D 298
%p{07) = Byl (298)
Differentiating equation (27A),
e ©oat © ot
x1(0 ) = a]]x1(0 ) + a]2x2(0 )
Tl
= (a1] +ay3,7)by0 . (30A)
Differentiating equation (27B),
.o + . + . +
x2(0 ) = a21x1(0 ) + a22x2(0 )
= ag(agy +az)byD . (308)
Further differentiation of equation (27A) gives

e 4 Ve wi
X)(0%) = a]]x](0+) + a12x2(0+)

n

2
Caqy(agytagpan) + ajpap2yy +

$

a]2a2]a22]b10 5 (31)

For Experiment 1, with only 2 observed,

information is obtained only from equations (28A),
(29A), (30A) and (31), from which we see that, at
the successive stages of differentiation, c]b] 5

ayy s 108y and ay, Mmay be identified. With
observation restricted to Y1 o further differ-
entiation does not yield ao and apy individ-
ually, as the reader is invited to confirm.

For Experiment 2, in which y, also is observed,
equation (29B) gives c2b1a2] uniquely, which

if the product czb] is known, gives a and
then ayo s uniquely. Thus, as exnected, the

result is the same as for the Laplace transform
analysis.

Remark: This examnle has illustrated that the
method suffers from the same drawbacks as the
Laplace transform aporoach as described in Remark
3 of Section 2.2. The method has not been used
much for Tinear, time-invariant systems. It has
the decided advantaae, however, that it is
applicable to nonlinear and time-varying systems,
for which the Laplace transform approach is not.
Apnlications to some nonlinear models are given
in Section 3.

2.4 Markov parameter matrix approach

Grewal and Glover (1976) described a technique
for testing whether two sets of parameter values
can give the same observed responses for all ad-
missible forms of excitation. First, the Markov
parameter matrix

T (A y)Ty  (32)

G = £(c8)"(caB)T(cA%)
(where n is the model order) is formed. It is
possible to use G 1itself for a global identifi-
ability test by determining whether

G(p) =G(p")=>p=p'

but this again suffers from the same drawbacks as
the Laplace transform approach. What Grewal and
Glover (1976) did was to find the rank of the



Jacobian of G with respect to the unknown model
parameters. If the rank is equal to the number

of parameters, the system is identifiable, but not
necessarily uniquely. The rank test is also applic-
able to Jacobians from other approaches, for example,
the equations resulting from the Laplace transform
or Taylor series approaches.

Taking our two-state example,

e
A=
g
%2 8108 a;1,5(a77%2,,)
, [Ptz 121311%25,
A° =
2
221(311%225)  agptay,a,,
(3
A bl e F L PAPIRPU PR
e ( : +a2 +a,,a + a2
|(311%322)251 42172985143 535

2 2 2
(aqqag2)a1 42112558y p+a] 2y
3
322%235921 937142113153
If only Uy is applied and only 2 is observed,
c1by

¢1byayy

G(p) = 2
¢yby(ayy+ag a,)

3
C1by(ayy+2ay1a1,53,51 42,937,257

where the parameter vector p = Lcqb, ayy 3y ay azij :

It is clear that %% cannot possibly be of rank 5,

so let us consider the case where there is prior
knowledge that 315 = a($ 0) . Then

e T
P = Teby agy ay 25,77,

1 0
36 _ [ 2 iy
ap 2
Bl (agy#agpap) ¢1by2ay,

3
(a1]+2a1]aa21+a22aa21) c1b1(3a$1+2aa21)

0 0

0 0

C]b-lon 0

€10y (2agqatagpa)  cpbjaayy
26

and it is readily seen that rank i 4 provided
c1b1 s a and ay; are not zero.
Further examples are given by Grewal and Glover

(1976) and by Carson, Cobelli and Finkelstein (1983,
Section 7.5).

Remark 1: This method has the advantage that it
is computationally convenient and amenable to com-
puter implementation.

Remark 2: It is instructive at this point to
consider the general time domain solution of the

IPM~B

system described by equations (6), (7) and (8):
T
x(t) =e""x(07) + J _e Bu(t)dr (33)
0

and in particular the form for a zero initial 0
state experiment. Then parameter sets p and p
are indistinguishable if and only if

C()A (R)B(p) = C(BAK(H)B(R) (34)

for K =0,1, oeses It is well known that we
can restrict consideration to the first 2n
equations of the form (34). The upper bound

k = (2n-1) 1s readily arrived at through the use
of Tether's continuation lemma (Tether, 1970),
which states that, given matrices M1 s M2 and
M3 such that

_ _ 1
rank M] = rank(M] MZ) = rank<:3)

there exists, at most, one matrix M4 for which

M] M2
rank M M = rank M]
3 4

If we consider the matrices

(35A)

(35B)

CB CAB cAnTg
v - [CAB cA%B ... cA"g
-
[cA™ B ca"s ... ca2"%p
cA"B ]
B CAn+1B
My = |7,
[caZh-1g
My = A" cA™lp ... ca2""Tgg
M, = [CA%"3]

we knov that the rank conditions (35A) and (35B)
follow from the Cay]ey-Hgmi]ton theorem and so

from Tether's lemma, CAZ"B s uniquely defined.
Hence if equations (34) hold for k = 0,1,...(2n-1),
then they also hold for any k and no new inform-
ation is forthcoming from examining higher powers

of A . For our two-state example, with only

state 1 perturbed and observed, the (T 1) ele-
4 . 4 2

ment of A" s ay + 3a]]a]2a2] + 2a11a22a12a2]+

2 2
350872857 + (a]ZaZ]) so that a;, and 2y
still do not appear individually.

Also, if we consider a unit impulse input
bjuj(t) = bja(t) » with Xx(07) =0, then

| <

_ At
(t) =e b8

where §d is a vector zero except for a 1 in
row j . Then
y:(t) =c. eAtb.
i i J
S ciby +clbit + oAy, B 4
i i i* 73 27 T
ko
+ CciA bj e (36)

This makes it clear that, for a unit impulse



input, exactly the same parameter combinations
occur as successive derivatives of yi(t) at

t =0t in the Taylor series approach and as
successive elements of ciAkbj , k=0,1, ....

Remark 3: Some identifiability anproaches have
examined properties of the transition matrix

eAt » for example that described in Chapter 4 of
Halter (1982). Generally these techniques prove
rather complicated algebraically and are not easy
to apply for n > 2 . A more systematic time
domain approach, using a modal expansion is des-
cribed in Section 2.5.

2.5 Modal Matrix Approach

The methods presented in Sections 2.2 and 2.3 re-
sult in equations nonlinear in the unknown para-
meters, so it is difficult to see whether redund-
ancy exists. There are general methods for solving
these equations, some of which are presented by
Lecourtier and Raksanyi in this book, but the
problem is that sometimes the computations get so
complex that no result is obtained. Another method,
based on the modal matrix and its inverse, results
in bilinear equations. Many (often all) of these
equations are then reduced to linear equations by
the incorporation of information about outputs and
prior knowledge of the elements of A (Norton,
1980a; Norton, Brown and Godfrey, 1980).

The eigenvalues of A , A and, up to a scaling

factor, the eigenvectors m; are defined by

Am; = Am. SE T T (37)

The eigenvectors are collected together as columns
of the modal matrix M :-

AM = MA

where A is a diagonal matrix having A;oas

principal diagonal element i The eigenvalues
are assumed distinct; systems such as distillation
columns which have simple structure but repeated
eigenvalues are probably best treated by a special-

ised analysis exploiting their particular structures.

The modal matrix equations

T _ oy
=1, i=3 (38A)
=0, i$] (38B)
where r} isrow i of M and ﬂj is column j
of N=MT are bilinear in the unknown elements

-
of r. and ny -

The system response is given by equation (33). If
we consider an impulse input bjuj(t) = bja(t)

with x(07) =0,

= oAt = el
x(t) = e bjéd Me ijgd (39)
where éd is a vector zero except for a 1 in
row Jj . Hence
_ T At
X-i(t) - £'| e ﬂJb‘] s t>0
and
_ T At
yi(t) = c;ryefngby . t >0 (40)

for square, diagonal B. andC matrices, as in

equations (12) and (13). These equations are

known as the <nput-output equations and similar
expressions can be obtained for other forms of
input. For example, if u.(t) had been a unit

step (again with x(07) = 0) , then

T,-1

N AR Ty
¥i(t) = cyryh

(e""-I)n.b

505 » t>0. (41)
Prior knowledge of any elements of A can be
incorporated through the prior knowledge equations

aij = rjAgj s T =152.5.n 5 35 =71,2,...n . (42)
As noted above, the objective of the method is to
reduce the bilinear matrix equations to linear
equations by using the input-output and prior
knowledge equations and so to solve for

T
r. and ﬂj .

j Let us now consider the four experi

ments detailed in Section 2.2. For all the two-
state examples, the modal matrix equations are:

T
rnpo= 0 (43A)
i, = 0 (438)
T =
rong = 0 (43C)
T -
ron, = 1 (43D)
Experiment 1: SISO case, up_=8(t) Up =0,
Yo _= 0 . Since both modes appear in X and
T

the scaling of eigenvectors is arbitrary, r.

can be taken as [1 L
equation is

The input-output

T At
)’](t) = Cine ﬂ]b] s t>0. (44)

This gives the proportions of n from the ratio

of the normal modes and the scaling is then given
by equation (43A). In the absence of prior know-
ledge, the only other equations in the remaining

unknowns ro, and n, are (43B) and (43C) which

are linear and (43D) which is bilinear. The pro-
duct c]b1 is obtained uniquely from equations

(43A) and (44). Note that equation (43A) is
redundant if there is prior knowledge of c]b]

Prior knowledge of ar, (# 0) would give

.
Eylilly = Byp (45)

Assuming distinct eigenvalues, A n, is independ-

ent of N, so with r} known, equations (43B)

and (45) give n,sor is then obtained from

equations (43C) and (43D).

In some cases, prior knowledge can result in two
equations bilinear in the unknowns, but these can
be rearranged to give a singularity equation in
one of the unknown rows or columns (Norton,
1980a; Norton, Brown and Godfrey, 1980); an
example will be qiven in Experiment 4.

Experiment 2: One Input, Two Outputs, u](t) =

8(t) , uz(t) =0 . The available equations

are (43A) to (43D) and (44), from which n and
ny are known, and



T At
yz(t) = Cyroe Ihb1 s >0 (46)

which, with equation (43C), gives ro only if
czb1 is known; ny is then obtained from
equations (43B) and (43D).

Experiment 3: Two Inputs, One Output. Yo =0 .

If the inputs are applied separately, then for im-
pulsive inputs, the available equations are (43A)

to (43D), (44) and there is a second input-output

equation:

y](t) = c]:IeAtgzbz 3 t 20 (47)

By analogy with Experiment 2, the elements of A
are uniquely identifiable if c]b2 is known.

Now consider the two inputs applied simultaneously.
The observation, for impulsive forcing of both
states, is

T At
N = cpryetlmby +nby) L t>0  (48)

which does not give np oor n, individually even
if c1b2 were known. The system is unidentifiable

from this experiment and from any two inputs of the
same shape. If u](t) is a unit impulse and uz(t)

is a unit step, the input-output equation becomes

T At -1
y](t) = c1[£1e (ﬂ]b]+A ﬂzbz)

T =1
L t>0. (49)

Once [I is chosen, the normal mode amplitudes
give

-1
Cﬂ]b] + CqA gzbz =f (say).

Then, since
i T
G4A Ngby = qf - cyrymb, (50)

n, can be found from equations (43B) and (50

n,

provided c.lb2 is known. Then n; can be found
from f and ro from the modal matrix equations.
The elements of A are uniquely identifiable from
this experiment.

Experiment 4: SISO experiment with Uy #0 ,
Up_= OLs Y= 0 , prior knowledge that a1, = 0 .

For a unit impulse perturbation, the input-output
equation is

yz(t) = czrgeAtgqb] 5 t>0 . (51)

Since both modes appear in X5 s E; can be taken

as [T 1] and equations (43C) and (51) then
give " provided czb.| is known. The prior

information equation

5
ay, = ryAn, = 0 (52)

and the modal matrix equation (43B) are both bi-
linear in the unknowns ry and n, but may be

combined to give a singularity equation

5
det =0 (53)

A

which gives an expression for the non-zero
element of r, , ry; being zero since one of

the modes does not appear in ¥ This ex-

pression has two solutions, since the ordering
of the eigenvalues (aH and a22) in A s

arbitrary. The model is thus locally identifiable,
with two solutions, from this experiment.

Other examples are given in Norton (1980a),
Norton, Brown and Godfrey (1980) and Godfrey et
al (1982).

Remark 1: The modal matrix approach has the merit
that when all the equations can be reduced from
biTinear to linear equations, global identifiab-
ility is easily checked. In contrast to the
Laplace transform or Taylor series approaches,

the effects of adding prior information of elements
of A, or changing or adding to the inputs or
observed states, are seen with a minimum of re-
working, which makes the approach particularly
attractive if several different cases are to be
examined. One drawback of the method is that many
more equations have to be examined, with prior
knowledge adding to the number of equations, rather
than simplifying existing equations. In some cases,
Tocal identifiability is not particularly easy to
spot. Also, since the method employs the modal
matrix rather than the A matrix, identifiable
single parameters or combinations of parameters

in a model in which not all parameters are identi-
fiable are obtained Tess readily than with other
approaches.

Remark 2: The modal matrix approach has also
been used by Delforge (1980, 1981) to count the
number of independent equations once redundancies
have been determined. An upper Timit on the number
of solutions from their degree in the unknown
elements of M or N 1is then calculated. As
pointed out by Norton (1982), the limit is some-
times not tight enough to be useful and it is
possible to overlook nonuniqueness due to in-
ability to choose the ordering of the observed
eigenvalues to be consistent with the pattern of
zero elements in M and N (Norton, 1980b).

2.6 Exhaustive Modelling Approach

The objective of this method is to generate the
set of all models which are output indistinguish-
able and compatible with the assumptions on the
model structure. Starting from a model with
system matrix A , input matrix B and observation
matrix C , all equivalent systems must have
corresponding matrices A' , B' , C' related to
A, B, C bya similarity transformation:

A= TAT (54)
B' = T8 (55)
¢t = g1 (56)

(Strictly speaking, the model must be structurally
controllable and structurally observable for this
method to be applicable.) The approach is to

apply the known constraints on A , B and C to
determine the unknown elements of T (Walter and
Lecourtier, 1981; Walter, 1982, Chapter 5). If



T is unique, the system is uniquely identifiable;
if there is a finite set T , the system is
Tocally identifiable; otherwise, it is unidenti-
fiable. The method was anticipated, but not fully
developed, by Berman and Schoenfeld (1956) and
Rubinow and Winzer (1971).

If the constraints on A, B and C result in
any zero elements in T , then the corresponding

elements in T_] are also zero. This can be seen
by simply rearranging equations (54), (55) and
(56) to give

A= T
B = T B
C = c'T

The approach is now illustrated using the Experi-
ments on the two-state model described earlier. 1
For each experiment, the elements of T and T~
are denoted by:

t2 '
T-= and T "= |
t3 t4J t3
Experiment 1: SISO Case, u, =0, Yo =0 .
Since B = [b] OJT s

B! = =

and because any zero elements in B must also be
zero in B' ,

t3 = 0 and, from the above, £3 =0 .

Similarly since C = [c1 0] -

R
CA el g el [eety ¢ t,]
1 B s 11 g%

o) t2 = 0 and, from the above, t2 =0 . From
ml=1,

t; = 1/t
and
ty A/
This gives B' = [t;b, 07 (57)
C' = [/, 01 (58)
[t, 0] Ja,; a 1/t 0
R 1m 212 1 )
_0 t4 a1 Ay 0 1/t4
( 1
a +— 8
0 G < (59)
t
4
E;az1 a2

From equation (59), it is seen that a and ay,

are uniquely identifiable as is the product
CVEAE We need to examine both equations (57) and
(58) to see that the product c]b] is also
uniquely identifiable.

If there is prior knowledge of ao s then a{z
must equal a;p SO that t.l/t4 =1 . Then

A' = A and the parameters of A are uniquely
identifiable.

Experiment 2: Single-Input, Dual-Output, ué =0 .

S 0
C is now
0

2
c; O £ £ ot c f
and since C' = ! Al AZ = ]A] ]Az
0 c, t3 t4 c2t3 c2t4
from which £2 = E3 =0 and hence t2 = t3 =0 .
No new information is obtained because we already
knew that t3 =0 = t3 from B' =TB . The

approach does not readily indicate identifiable
combinations of parameters and these have to be
sought from relationships such as C'A'B' =

U 7ar 18 = cas .

cT™ In this case,
~ t]
a/ty 0 | [ g 2| |ty
CIAlBl =
ty

0 c2/t4 51621 ay, 0
¢1byay,
[€2D12359

so that c2b]a21 is identified uniquely. Thus
if there is prior knowledge of czb] s A9 is
known and since aé] must then equal an »
t4/t] =1 and the parameters of A are identi-
fied uniquely.

Experiment 3: Dual-Input, Single-Output, Y= 0.
For inputs welT separated in time, then by
analogy with Experiment 2, the elements of A
can be identified uniquely if there is prior
knowledge of c1b2 3

]T

For simultaneous inputs, B = [b1 b2 if the

inputs are of the same shape, whereas
b 0
B = 01 b if the inputs are different. In
2

either case, C = [c-l 0] so %2 =0 and hence,

. _ T
t2 =0. For B = [b] b2] »
t1 0 b1 b1 t]
B' = 2
t3 t4 b2 b1t3 + b2t4

which provides no new information.

By contrast, when the two inputs are different,



