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This book is dedicated to that human
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Preface

The purpose of this volume is to provide an overview of the rapidly
advancing class of materials known as ceramics. Amazingly, human-
made ceramic articles 24,000 years old are known, yet the technology
of ceramics is a rapidly developing applied science in today’s world.
In fact there is keen competition among the leading industrial nations
to exploit this science to the fullest.

The modern engineer or scientist encounters new developments
daily. It is virtually impossible to be fully knowledgeable in even the
limited areas that impact on one’s individual field of endeavor.
However, any technologist who has to deal with materials needs to
be at least conversant with what is going on in the discipline of en-
gineering ceramics.

Revolutions are taking place in which advanced ceramics play
critical roles. A few such areas include the Space Shuttle, supercon-
ductivity, nuclear reactors, advanced gas turbines and reciprocating
engines for energy conservation, integrated circuits, the laser, ad-
vanced optics, fiber optics, and biomedical applications. Each of
these application areas represents truly amazing changes in the mod-
ern world.
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This volume reviews the evolution of the ceramic technology
and the early influences leading to today’s worldwide interest in this

arena. Although not intended to be a design manual, property tab-
ulations and discussions of the major issues leading to successful
applications are provided. The subjects covered include traditional
ceramics, the new ceramics, ceramic processing, structural design
considerations, the concept of fracture toughness (a central issue
in ceramics), joining of ceramics, nondestructive testing and its im-
portance, ceramic cutting tools and their implications, supercon-
ductive ceramics, advanced automotive ceramics, and carbon-carbon
composites.

The structure of the ceramic crystal is complex and leads to
many different forms. When one considers the number of atom
types and arrangements that can be synthesized into ceramic bodies,
it is easy to appreciate the fact that there is an infinite number of
possibilities for the properties of such structures. That is why the
developments in ceramics are leading to astounding discoveries and
accomplishments. In the future, more and more variables will be
discovered, studied, and applied, making possible even more revo-
lutionary and useful applications.

Solomon Musikant
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1

Ceramics Fundamentals

Ceramics is commonly defined* as the art that deals with the design
and fabrication of objects made from fired clay. An ancient piece
of utilitarian earthenware fabricated about 1200 B.C. is shown in
Figure 1.1; Figure 1.2 shows modern porcelain figurines of great
delicacy and beauty. These products are about 3200 years apart in
time but not so far apart in the principles of their fabrication or in
the degree to which they are appreciated. All types of earthenware,
stoneware, and porcelain are included in the term ‘‘ceramics.”’ Por-
celain refers to wares that are fired at high temperatures and are
translucent, while stoneware and earthenware, such as terra-cotta,
are fired at successively lower temperatures and are opaque.

More specifically, ceramic is defined as any of various hard,
brittle, heat- and corrosion-resistant materials made by firing clay
or other minerals and consisting of one or more metals in combina-
tion with one or more nonmetals, usually including oxygen. This
definition must include not only pottery, but refractories (i.e., high-

*American Heritage Dictionary (Boston: Houghton Mifflin Co., 1978).
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Figure 1.1 Ancient earthenware jug, approximately 1200 BC, Israel.
(Photograph by S. Musikant.)

temperature resisting), structural clay products, ceramic coatings,
abrasives, glass, glass-ceramics, and certain types of electronic com-
pounds. In fact, a material such as silicon carbide, in which both
the silicon and the carbon atoms have some metallic properties, is
still considered a ceramic, although here there is some overlap with
the definition of a semiconductor.

Glass is a special case. Although we have included glass in the
definition of ceramic, the major distinction is that glass is an amor-
phous material, whereas ceramics are primarily crystalline in nature.
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Figure 1.2 Porcelains modeled by Arno Malinowski for the Royal
Copenhagen Porcelain Manufactory. Figures, left to right: Asia-Europe,
Africa, America, Australia. These important porcelains mark a departure
from the forms of earlier porcelain ware. (Courtesy of the Cooper-Hewitt
Museum of Design, Smithsonian Institution.) From *‘‘Ceramic Master-
pieces’> W. David Kingery and Pamela B. Vandiver, Free Press 1986.

However, most common ceramics have glassy phases incorporated
in their microstructures. Glass-ceramics are another class of mater-
ials in which very small ceramic crystals are incorporated in a matrix
of glass. The tiny crystallites impart desirable mechanical and ther-
mostructural properties. Pyroceram is an example of a glass-ceramic.

Magnesium oxide (MgO) is an example of a simple oxide ceramic
that is used as a high-temperature insulation in the form of blocks
with some structural strength (i.e., a refractory) and that has a melt-
ing point of 2800 °C (5072 °F). It is a commonly used material for
high-temperature industrial furnaces.

EVOLUTION OF THE CERAMIC TECHNOLOGY

The earliest known clay figures have been dated at about 22,000
B.C. Figure 1.3 illustrates some of the known history of ceramic art.
As can be seen, every age contributed to the body of ceramic know-
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Figure 1.3 The flow of ceramic history illustrates the mainstreams of
earthenware, terra-cotta, and stoneware; to ‘‘triaxial’’ hard-paste porcelain;
of quartz-based bodies; and of tin-glazed ware. Some important shaping and
decorative techniques are illustrated, but the diagram is far from complete.

From ‘‘Ceramic Masterpieces’> W. David Kingery and Pamela B. Van-
diver, Free Press 1986.
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ledge. This storehouse of information is culminating in today’s rapid
technological developments in the field of ceramic materials.

Like many human endeavors, ceramics is an art whose begin-
nings are shrouded in the misty past, probably before invention of
the written word. This is not a unique situation because it is easy to
say the same thing about many of our ‘‘new’’ and revolutionary
technologies. Examples include weaving, agriculture, metallurgy,
the use of fire, mathematics, astronomy, weather forecasting, navi-
gation, the sail (aerodynamics), mechanics (the lever, the wedge,
the wheel, and the inclined plane), and as already stated, ceramics.
The word itself comes from the Greek keramos pottery.

The industrial revolution was made possible by advanced fur-
naces and heat engines, and ceramic materials were essential for
thermal insulation of the various types of furnaces and engines. In
England, Wedgewood developed mass production techniques for
ceramics that put useful and beautiful ceramic dishes within the
reach of many. During the nineteenth and twentieth centuries the
scientific understanding and manufacturing arts for the produc-
tion of ceramic articles reached a high degree of sophistication.
There became available a wide variety of new types of building ma-
terials with superior durability, strength, and other properties. These
materials included brick, tile piping for drainage systems and roof-
ing, sanitary ware, which was a primary factor in the development
of public sanitation, and refractory (high-temperature) insulation
materials, which served as furnace linings for the glass, steel, and
other industries that depended on high-temperature processes. Rock
wool is an early example of a ceramic fiber used to insulate buildings
and appliances.

The raw materials for most, if not all, of these products came
from mines and quarries, and these raw ingredients were prepared
for the thermal processes needed to convert them to useful articles
by crushing, washing, sieving, and mixing appropriate formulations.
Usually, these naturally found materials were not pure, and the
formulas had to take into account the small fractions of naturally
occurring and often variable impurities and minor fractions.

Dielectric (electrically insulating) materials were important as
the electrical and electronic technologies matured during the present



