_Software
Guidebook

b - MNEE 328L 3E6L 25 S9 58 58

Robert L. Glass
Ronald A. Noiseux

SOFTWARE
MAINTENANCE
GUIDEBOOK

Robert L. Glass
Ronald A. Noiseux

EEEEEEEEEEEEEEEEEE

Library of Congress Cataloging in Publication Data

GLASS, ROBERT L date
Software maintenance guidebook.

Bibliography: p.

Includes index.

1. Electronic digital computers—Programming.
I. Noiseux, Ronald A., joint author. TI. Title.
QA76.6.G56 001.642 80-21967 ..

ISBN: 0-13-821728-9

© 1981 by Robert L. Glass and Ronald A. Noiseux

All rights reserved. No part of this book

may be reproduced in any form or by any means
without permission in writing from the authors
and the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 21

Editorial Production/Supervision by Theodore Pastrick
Manufacturing buyer: Joyce Levatino

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

SOFTWARE
MAINTENANCE
GUIDEBOOK

Robert L. Glass books published by Prentice-Hall

SOFTWARE RELIABILITY GUIDEBOOK

PREFACE

Maintenance is the enigma of software:

Enormous amounts of dollars are spent on it.

Little research or management attention is given to it.
And, in fact, it is not even a well-defined concept!

The time has come to begin removing the shroud of Merlinism which
surrounds maintenance. This book is an attempt to do just that.

It begins by placing maintenance into the perspective of the
“software life cycle” concept, and presents a definition of the term
“maintenance.”

It moves then to an unusual point of view — the importance of
people in software maintenance. The theme is developed that the
maintainer is an unsung hero, quietly keeping the computer software
products humming in a world where little attention and few accolades
are handed out.

With this people-oriented foundation, the book then moves to the
meat of the subject — what technologies, both old and new, can be
used by these unsung heroes? Tools and techniques which the
maintainer should know about are described, ranging from the
mundane (code reformatters) to the blue sky (the supercompiler).
Heavy emphasis is put on the up-front activity of doing it right the first
time — methods by which the software developer can ease the

X Preface

problems of the software maintainer. A liberal number of examples is
presented, most coded in the newly-emerging Department of Defense
programming language Ada.

As a non-identical twin to the technologist point of view, the book
then provides a management perspective on maintenance. Planning,
organizing, and directing maintenance are all discussed. A somewhat
radical view of software documentation is presented — one which has
enormous promise for improved documentation quality, but one
which requires new management thinking.

And finally, to bring the subject into focus and add a touch of
reality, a maintainer’s diary is presented — a day-to-day documenting
of some of the events which characterize the software maintainer’s on-
the-job lifestyle.

Sprinkled throughout is a nearly complete bibliography of refer-
ences to software maintenance in the literature. Symptomatic of the
general disinterest in the subject, little has been written . . . until now.

The reader of this book is expected to be a software manager or
technologist or student who has a basic understanding of what
software is, but whose knowledge of maintenance is either rudimentary
or has not been updated to include recent developments. It should be
particularly useful to the consultant who wants to help computing
organizations to a higher quality and more cost-effective maintenance
activity; as a component in a university-level course in software
engineering; and as on-the-job retraining material for experienced
software people.

This book is written with an “equal opportunity” spirit! Neither
racial nor sexual stereotypes should be inferred from words like
“policeman” or “chairman,” and the ubiquitous pronoun “he” should
be taken as a third person substitute for the sexless version our
language continues to lack.

ACKNOWLEDGEMENT

To the many of you who have contributed to this book, by virtue of
an idea, a phrase, an article, or a book, our sincere thanks. The soft-
ware world will become a better place because each of us strives to im-
prove it.

Preface xi

DEDICATION

The authors dedicate this book to all the software maintainers of the
world — those unsung heroes who quietly keep the software machinery
humming.

CONTENTS

PREFACE ix
1. INTRODUCTION 1

1.1 Maintenance in the Life Cycle 4
1.2 The Maintenance Mini-Cycle 12

1.3 Perfective, Adaptive, Corrective Maintenance 13
1.3.1 Perfective Maintenance 13
1.3.2 Adaptive Maintenance 13
1.3.3 Corrective Maintenance 14

1.4 Definitions 14

2. THE PEOPLE SIDE OF MAINTENANCE 17

2.1 Putting the People Problem in Perspective 19
2.2 Personality Profile of the Maintainer 21
2.2.1 Flexibility 22
2.2.2 Broad Background 23
2.2.3 Patience 23
2.2.4 Self-Motivation 24
2.2.5 Responsibility 24
2.2.6 Humility 24
2.2.7 Innovation 25
2.2.8 Historian 25
2.3 Styles and Style Clashes 26
2.3.1 Assembly Program Style 28
2.3.2 Fortran Program Style 29
2.3.3 COBOL Program Style 30
2.3.4 Algol Program Style 31

vi

Contents

2.3.5 Other Program Style 32
2.4 Goals and Priorities 33
2.4.1 Software Reliability 33
2.4.2 Error Correction 33
2.4.3 Change Requests 34
2.4.4 Software Maintainability 34
2.4.5 Software Efficiency 34
2.4.6 Documentation 35
2.5 Constraints on Modifications 35
2.6 Customers’ Needs 38
2.7 Individual Recognition 41
2.8 References 42

THE TECHNICAL SIDE OF MAINTENANCE 49

3.1 What the Maintainer Does 51

3.1.1 The Maintainer and the User 53

3.1.2 The Maintainer and the Problem Report 54
3.2 How the Maintainer Does It 54

3.2.1 Tools 55

3.2.2 Techniques for Maintenance 83

3.2.3 Documentation 119
3.3 References 122

THE MANAGEMENT SIDE OF MAINTENANCE

4.1 Planning for Maintenance 134
4.1.1 Planning for High-Quantity Maintenance: The
Importance of People 135
4.1.2 Planning for High-Quality Maintenance: Reviews
and Audits 138
4.1.3 Other Planning Considerations 140
4.2 Organization for Maintenance 141
4.2.1 Change Board 143
4.2.2 Change Activity Review 145
4.2.3 Product Certification 152
4.2.4 Configuration Management 154

4.2.5 Possible Organizations 155
4.3 Documenting for Maintenance 157
4.4 Environment for Maintenance 166

4.5 References 167

133

Contents

A MAINTAINER’S DIARY 175

EPILOGUE 181

BIBLIOGRAPHY 185

INDEX 187

vii

One

Introduction

Unfortunately, the nature of hardware and software errors differs in at least one
fundamental characteristic—hardware deteriorates because of lack of mainte-
nance, whereas software deteriorates because of the presence of maintenance.*

This is a pop quiz. Quick now, answer these questions without
giving them deep thought. Just a simple yes or no will do.

1. Software maintenance consists of correcting the errors in
software.

2. Software maintenance is an afterthought kind of thing, and
little or no planning is needed for it.

3. Software maintenance consumes only a small slice of the
software budget.

4. Software maintenance is a fairly uninteresting subject.

That’s it. Just a simple introductory quiz. Now let’s do a little self-
grading.

* “Initial Thoughts on the Pebbleman Process,” Institute for Defense Analyses,
January 3, 1979; Fisher and Standish.

2 1 Introduction

The correct answer to each of the questions above is “no.” Starting
with 100, subtract 25 points for each incorrect answer. If your grade is
100, you probably don’t need to read much further in this book, except
perhaps section 3, where some technology concepts are discussed. If
your grade is 75, you are really on top of software as a profession, and
deserve congratulations.

But if your grade is 50 or below, do not be chagrined. You are
solidly in the majority of the software population. There are a lot of
misconceptions and intuitional errors floating around about software
maintenance, and you have fallen into them.

The reasons the answers to all of those questions are “no” will all be
elaborated in this book. To satisfy your curiosity, though, in brief,
those reasons are:

1. Software maintenance involves considerably more change
implementation than it does error correction.

2. Traditional software maintenance approaches have pretty
much been afterthoughts. However, the result of that in-
attention is frequently chaotic, unresponsive, and destructive
maintenance.

3. Several studies show that software maintenance consumes
over half of the software development dollar!

4. With that much money at stake, software maintenance just
has to be interesting!

The purpose of this pop quiz is to sensitize the reader. Like other areas
subject to a lot of stereotypes, software maintenance has been
subjected to a veritable cloud of misunderstanding. Most experienced
computing professionals and academicians, in spite of their broad
knowledge of other aspects of software, are extremely naive about
maintenance. It is the purpose of this book to dispel that naivete and
those stereotypes, move past them, and provide some techniques and
directions for the hopefully newly-interested-in-software-maintenance
reader.

(Question 4, whether software maintenance is interesting, was in
fact a trick question. Most honest software folk would have answered
that it is, indeed, uninteresting. It will be a test of the effectiveness of
this book to see if the reader can truthfully change that predicted

1 Introduction 3

answer by the time he or she has finished this material!)

Now that you have had the stereotypes exposed, it is time for
another pop quiz. Same rules, just a simple yes or no. But keep your
guard up!

1. Because of its importance, software maintenance has been the
subject of a lot of research studies.

2. Tools and techniques for the maintainer are well known.

3. Software maintenance people are usually the best the com-
puting installation can afford.

4. Management places a lot of emphasis on software mainte-
nance concerns.

Bet you were a little more wary this time! Question 3 was probably a
giveaway. Once again the correct answer to each of those questions is
“no.” The fact of the matter, in a figurative nutshell, is that software
maintenance has been a ho-hum subject to just about everybody.
Researchers haven’t bothered with it; tools and techniques tend to be
leftovers from the software developer’s toolbox; maintenance assign-
ments are generally thought of as the pits and avoided by all but those
who can’t pull it off, like the junior folk and the lowest-rated ones; and
management, in general, appears to be satisfied with that picture.
(Some companies even have to give bonuses to induce people to do
maintenance work!)

Like the previous one, this pop quiz had a purpose. If the first was
designed to remove the stereotypes, this one was designed to show the
aftereffects of those stereotypes. The fact of the matter is that software
maintenance has been the subject of colossal blind neglect. Because its
significance has been poorly understood, no one has cared to do much
about it. The result is an understudied, extremely important technical
field.

In that environment, it is difficult to write an effective and useful
book. First, there is the problem of motivating readers into moving
past the cover. As we have seen, “software maintenance” is a historic
turnoff. To make matters worse, there is not a solid body of
literature—the work of past maintenance experts—to base a book on.

The only reasonable answer to that dilemma, at least at present, is
to create a pioneering book and make it interesting enough to attract

4 1 Introduction

readers who are otherwise turned away by the topic. As mentioned
before, you readers get to issue the grades on that pop quiz.

The authors of this book have spent a lot of time maintaining
software. They are also students of computer science, from both an
experiential and an academic point of view. This book is an attempt to
transfer that experience in a meaningful way; to provide a basic
reference point from which the desperately needed future research into
software maintenance can proceed; to give the practicing software
professional and his or her manager the essential information needed
to perform a vital function more effectively; and to provide the student
of software engineering with both perspective and tools to fully
understand the whole spectrum of software activity. Even including
that historically uninteresting field, software maintenance!

1.1 MAINTENANCE IN THE LIFE CYCLE

At a recent computing conference, discussion of the so-called
computing life cycle became a standing joke. Every presenter of every
paper showed a viewfoil or a slide containing his or her graphic version
of the concept. Toward the end of the day, one wag referred to his as
the “obligatory software-life-cycle chart™!

The field of software engineering is by no means immune from fads.
A subject catches the eye of the researcher, and 909 of researchers end
up pouring some energy into that subject. A buzz word comes along
with a new or interesting connotation, and the field is alive with that
buzz word. A concept emerges that promises lowered production costs
and better schedule performance in the delivery of software, and
everyone leaps aboard the bandwagon.

Fortunately, most of these fads have value. Perhaps not as much
value as the number of bandwagon jumpers would indicate, but still
value. The software life cycle is just such a concept, with just such a
value.

The major thrust of this concept is to dispel the myth that the
process of software development is principally the act of coding
software. Some early studies [1] in the late 1960s and early 1970s began
to cast doubts upon that myth and to focus attention on what really did
constitute the software development process. Further study showed
that the analysis of software requirements and the design of the

1.1 Maintenance in the Life Cycle 5

software consumed far more time than its coding. Just as important,
further studies also showed that the checkout and testing of the coded
software consumed an even more surprisingly large amount of time.
The emergence of the software-life-cycle chart was an attempt to reflect
these findings and to graphically illustrate the situation that the factual
studies were just beginning to expose.

Many early software-life-cycle charts left out entirely the subject of
software maintenance. Just as the early focus had been mistakenly
placed on the coding process, the newer focus was still mistakenly
placed on the development process. It was not until the mid-1970s that
software-life-cycle charts began including software maintenance—and
what a profound awakening those pieces of graphic art produced!

It is time for a definition. The software life cycle will be defined here
as the entire process, from beginning to end, of the development and
use of software. That process includes the distinct phases called
requirements definition, design, coding, checkout and testing, and
maintenance. The reason for calling it a life cycle is probably clear from
its definition—it is a womb-to-tomb type of definition, one that pays
attention to all of the activities in the software process.

The reason this concept emerged and became popular is only partly
dependent on the myths that it exposed and overturned. It is also
popular because, in the world where software costs are a major
concern, it was becoming obvious that spending money on one
software-life-cycle phase could have a profound effect on some of the
other phases. For example, putting money (and presumably care) into
design would lower the cost of coding, checkout, and testing. Better
coding would reduce checkout costs. More effective requirements
analysis would lower the cost of every subsequent phase.

This cost-trade argument really became important when the
significance of maintenance became clearer. Doing a better job in any
of the preceding phases always had a cumulative effect on lowering
maintenance costs. Considering how large maintenance costs are, this
is of pretty fundamental importance. One whole section of this book,
and a lot of comments along the way, will be focused on the task of
lowering maintenance costs by spending more careful effort on the up-
front life-cycle phases (section 3.2.2.1).

Just as important, the cost trades, prior to life-cycle consideration,
had not been obvious. The software producer who delivered software
to a customer but had no responsibility to maintain it, for example,

6 1 Introduction

might do a slovenly job on some aspects of software development in
order to cut costs, with the customer actually incurring higher total
cost because of the increased cost of maintaining a slovenly product.
With the attention on life-cycle considerations, the customer could
direct the developer to do a better job, pay a little more for that better
job, and end up with a product whose total cost was less. These
economic arguments were fundamental to the popularity of the life-
cycle concept.

It is time for a few more definitions. The various phases of the
software life cycle are made more specific here.

The first phase in this book will be called requirements/specifica-
tions. Elsewhere it may be called systems analysis. It is the phase where
the problem is being understood and defined. A solution to the
problem may evolve during the requirements/specification phase,
but it is held in check pending a complete understanding of the prob-
lem. Only then should a solution be consciously considered; its repre-
sentation is then stated in terms of a specification for a software sys-
tem, and that specification is the primary output of the requirements/
specification phase. Perhaps the greatest hazard during this phase is
the temptation to define a solution to part of the problem, ignoring the
hard parts or those that are ill-defined. Succumbing to this temptation
leads to inadequate design and implementation, which in turn leads to
revised requirements and major modifications (or, in fact, to “death”
of the system). Modification of existing software is probably the
greatest plague of the software profession. It is difficult, costly, and
frustrating. Many a program has been thrown away and rewritten
because it was “unmodifiable.” Thus, well-thought-through require-
ments and specifications are vital to the eventual activities of the
software maintainer.

The second phase is the design phase. It is time to translate the
problem and its requirements specification into a conceptual solution,
a blueprint for the actual solution or implementation that will follow.
Computing-specific considerations are made: What computer? Which
of its resources, and how much? What language? What modules? What
sequence of functions? What data structures? What else? All of these
ingredients are dumped into the specifications-defined pot, and stirred
into a workable and specific plan. The primary output of the design
phase is a design representation. It may take the form of words,
flowcharts, decision tables, program design language, or any number

