COMPULER
USING

PACAL

for the
APPLE Il Family

Richard Halpern

Microcomputer Graphics
| Using Pascal

For the
Apple Il Family

RICHARD HALPERN

Bergen Community College

I‘ HARPER & ROW, PUBLISHERS, New York
Cambridge, Philadelphia. San Francisco,

l London, Mexico City, Sao Paulo, Singapore, Sydney
1817

Sponsoring Editor: John Willig

Project Coordination: Total Concept Associates
Cover Design: Sullivan Studios

Text Art: Textbook Art Associates

Production: Willie Lane

Compositor: Ampersand Publisher Services, Inc.
Printer and Binder: R.R. Donnelley & Sons, Company

Microcomputer Graphics Using Pascal: For the Apple II Family
Copyright © 1985 by Harper & Row, Publishers, Inc.

All rights reserved. Printed in the United States of America. No part of this book may be used or
reproduced in any manner whatsoever without written permission, except in the case of brief quotations
embodied in critical articles and reviews. For information address Harper & Row, Publishers, Inc., 10 East
53d Street, New York, NY 10022.

Library of Congress Cataloging in Publication Data

Halpern, Richard P.
Microcomputer graphics using PASCAL for the Apple 11
family.

Bibliography: p.

Includes index.

1. Apple II (Computer)—Programming. 2. PASCAL
(Computer program language) 3. Computer graphics.
I. Title.
QA76.8.A662H274 1985 001.64'43 85-758
ISBN 0-06-042583-0

8586878 987654321

Microcomputer Graphics
Using Pascal

For the
Apple Il Family

Preface

Welcome to the world of computer graphics! If you know little about the
subject and wish to learn more, I think you will find this book useful. In this
introduction, we will briefly discuss what this book is about and what you
should know to make good use of it.

What Is Computer Graphics Good for, Anyway?

The simplest answer to this question is that it’s good for quite a bit. Computer
graphics is used in many different fields. It is a phenomenon that is bound to
increase as the price of good graphics equipment continues to drop. The
following are representative examples of computer graphics applications:

Business. Bargraphs and pie charts are often used in business, usually to
summarize large quantities of data that would otherwise be time-consuming
and painful to read.

Science/Research. Various plots, such as /ine graphs, scatter diagrams,
and histograms, are used to summarize patterns and tendencies found in
research results. Contour plots are ideal candidates for computers: not only
can the computer plot the desired quantity, but it can also do the complex
calculations often associated with these plots. Simulations of physical
phenomena, such as fluid flow, can be carried out and observed by means of
computer graphics.

ix

PREFACE

Engineering/Design. A wide variety of projects, from large power plants to
delicate optical systems, are designed with the aid of computer-generated
drawings. Not only can something be designed, but its performance can be
simulated using the computer. If need be, the design can be modified and
redrawn, and this procedure can be repeated as often as necessary.

Image Processing. Computers can be programmed to analyze the informa-
tion content and enhance the quality of certain images. The most widely
publicized examples of this are pictures sent back from space probes . The
computer can remove spurious information that is inevitably present in long-
range transmissions and improve contrast. In a more down-to-earth applica-
tion, computer-assisted tomography—CAT scan—allows a physician to
assemble a three-dimensional model derived from X rays taken from various
perspectives.

Computer-Generated Movies. The slick commercials on television that
are characterized by space-age effects are mostly computer-generated. So are
such films as Tron.

Games. Computer games are examples of clever graphics programming. At
first available only on arcade machines, they can now be played on very
inexpensive home machines. This is a good example of how plummeting
prices make graphics-related equipment available to a wider audience.

What Can You Expect from This Book?

The purpose of this book is to explain the principles behind computer
graphics. The chapter summary that follows will give you a rough idea of what
lies ahead. Note that the book is not a compendium of graphics programs.
Although numerous ideas are illustrated with Pascal routines, it is up to you
to do the vast bulk of the programming .The book will give you the foundation
and the framework; you must build the rest of the house.

Chapter 1 is a discussion of hardware. A knowledge of how a system
puts an image on the screen is very useful, especially if you want to exploit the
features of the system through advanced programming. The chapter doesn’t
discuss specific brands of hardware. Rather, it answers general questions:
How does a CRT project an image on its screen ? How can a computer store
an image? What are the major input and output devices, and how do they
work ?

Chapter 2 introduces the essential core of graphics commands that are
needed to apply the principles covered in the book.

Chapter 3 presents two types of graphs that provide points of departure
for the discussion of two important problems. The line graph introduces a

PREFACE

xi
discussion of how to handle the wide variety of coordinate systems that exist
in the real world. The bar graph is used to introduce the general problem of
drawing polygons. This chapter also discusses the problem of filling
polygons—that is, lighting all the interior pixels.

Chapter 4 discusses two-dimensional transformations. These are the
mathematical operations that allow us to execute certain changes on an
object, such as enlargement or various types of movement.

The focus of chapter 5 is the organization of graphics data: How do we
arrange graphics information in the memory so that we can use it to make a
picture? How do we store a picture on a disk and retrieve it from the disk?

Chapter 6 discusses the concepts of windows and viewports. You will
learn how to restrict your attention to a particular area of a picture and how to
limit your drawing to a certain part of the screen.

Chapter 7 begins the treatment of three-dimensional graphics. After
some mathematical preliminaries, which extend familiar two-dimensional
concepts to three dimensions, the chapter discusses projections, which enable
us to represent real-world objects, which are in three dimensions, on a two-
dimensional screen.

Chapter 8 continues the discussion of projections, extending your
capabilities to include viewing an object from various positions.

Chapter 9, the last chapter, is devoted to the task of hidden line removal.
This is important because only the parts of an object that we can see should be
projected on the screen.

Finally, appendix A provides a review of mathematics ,and appendix B
presents additional p-System Turtlegraphics commands.

What Does This Book Expect from You?

Needless to say, to do computer graphics, you need a graphics-capable
computer. This book assumes that you have an Apple and the p-System and
that you can program in Pascal. I have been careful throughout the book to
build the routines on a small group of basic commands: this allows you to
concentrate on the graphics, not on complete mastery of the p-System.
Readers who wish to explore the entire Turtlegraphics system should refer to
appendix B.

Most areas of computer graphics require some mathematics. At the very
least, you should feel comfortable with basic algebra and trigonometry. In
addition, you should either understand or be able to learn about vectors and
matrices. If you have any doubts in these areas, you should read appendix A
first.

The surest way to become proficient in computer graphics is to do
computer graphics. A book can teach you the principles, but it cannot convey

xii PREFACE

the many details and subtleties involved in developing a useful graphics
project. At the very least, try the exercises at the end of each chapter. They
provide a good review of what you have learned (or think you have learned).
Better yet, think of some projects that are interesting to you. Such projects
tend to be the most motivating, and they will often stimulate you to probe
beyond what you have already learned. Let your imagination go free—and
have fun!

Richard Halpern

Contents

Preface ix

Chapter 1 Hardware Fundamentals
Basic Computer Operation 1
Output Devices 5
Input Devices 18
Problems 22
References 23

Chapter 2 Essential Graphics Commands 24
Screens 26
Controlling the Turtle 26
Drawing Modes 29
Initializing Graphics 30

Labels 30
Problems 31
References 32

Chapter 3 Graphs and Polygons 33
World Coordinates 33
Converting to Device Coordinates 34
Creating Line Graphs 38
Plotting Simple Shapes: The Bar Graph 40
Polygons 43

vi

Problems 51
References 54

Chapter 4 Two-Dimensional Transformations
The Centroid 56
Translation 56
Scaling 58
Shearing 59
A Temporary Coordinate System 60
Rotation 63
Reflections 66
Matrices and Homogenous Coordinates 71
Interactive Graphics 75
Animation 75
Problems 80
References 81

Chapter 5 Graphics Data Structure 83
Records 84 :
Files: General Concepts 85
Display Files 88
Linked Lists 94
Segmentation 105
A Normalized Display File 109
Problems 111
References 112

Chapter 6 Windows and Viewports 113
Windows 114
Viewports 115
Window-to-Viewport Mapping 117
Clipping 118
Zooming and Panning 124
Problems 127
References 128

55

Chapter 7 Three-Dimensional Graphics: Part One

Three-Dimensional Coordinate Systems 130
Vectors in Three Dimensions 131

Lines 132

Planes 134

Projections 135

CONTENTS

129

CONTENTS

Problems 150
References 151

Chapter 8 Three-Dimensional Graphics: Part Two 152
Determination of Heading, Pitch, and Bank 153
Three-Dimensional Transformations 157
Programming Considerations 163
Miscellaneous Projections 166
Problems 169
References 169

Chapter 9 Hidden Line Removal 170
Back Faces 171
Programming Back Face Removal 172
Lines Blocked by Another Object 173
Programming Consideration for Two Objects 179
Problems 191
References 193

Appendix A Mathematics Review 195
Appendix B Additional p-System Graphics Commands

Index 221

213

vii

Chapter 1

Hardware Fundamentals

When you have finished this chapter, you will understand how a micro-
computer can produce an image from dots on a cathode ray tube (CRT). You
also will have been introduced to various useful computer graphics hardware
devices.

OBJECTIVES

1. To understand the essentials of microcomputer
operation.

2. To understand the operation of raster scan and vector
scan displays and DVST systems. '

3. To understand the operation of hard-copy output
devices.

4. To understand the operation of various graphics input
devices.

BASIC COMPUTER OPERATION

Although a microcomputer may appear to be a jungle of integrated circuits,
we can think of it as composed of three distinct units: a memory unit, a
central processing unit (CPU), and an input/output (I/O) unit. Basically,
the memory stores information, the CPU does the calculations, and the 1/O

ONE/HARDWARE FUNDAMENTALS

unit acts as the interface between computer and human. We will elaborate on
each of these units shortly. For electronic communication, the units are linked
together by many parallel wires called a bus. A schematic diagram of a
computer system is shown in figure 1.1.

How is information in a computer represented? If we could investigate
the voltage at every point along the computer’s lines of communication. we
would turn up only two possible values: O and a fixed value, such as 5 volts.
This situation is represented most naturally by the binary number system,
whose values, called bits, are 0 and 1. The O represents the absence of a
voltage, and the 1 represents the presence of a voltage. Therefore. all
information in a digital computer can be represented as a series of 1°'s and
0’s.

Computers handle bits in groups called words. A word usually has 32
bits for large computers, 8 or 16 bits for smaller computers. It is important to
note that two words that have the same combination of 1’s and 0’s do not
necessarily have the same meaning. Computers interpret words differently in
different situations. Consider the word 0 1 1 0 1 0 O 1. At times, it is
interpreted as the binary number 105. At other times, it is interpreted as the
character i. Fortunately, computers are designed to provide the correct
interpretation of words at all times.

Memory
The function of a computer’s memory is simply to store information. The
memory unit consists of thousands of tiny electronic cells, called locations.
Location
<——————| Input/Output
207 | 11001010
208 | 11100011
209 | 01011100
Figure 1.1 Schematic diagram of a com-
puter. Arrows symbolize the bus. or wires, Figure 1.2 Memory locations and their

connecting the units. contents.

BASIC COMPUTER OPERATION 3

each capable of storing eight bits, or one byte, of information. Every location
is identified by a unique number, called an address, that indicates physical
location within the memory. Figure 1.2 is a schematic diagram of a section of
memory. Stored information, referred to as the contents of a location, falls
into one of two categories: instructions, which tell the computer what to do
and are normally stored in consecutive locations; and data, which consist of
information that is processed in some way according to the instructions.

Two types of operations can be performed on a memory location: a write
operation, during which the contents of a location are replaced by a different
byte (figure 1.3); and a read operation, during which the contents of a location
are copied, but not changed, by other units of the computer (figure 1.4). In
either case, the memory unit must be sent signals indicating the address of the
desired location and the nature of the operation (read or write). The memory
is equipped with special circuitry that decodes these signals and responds
accordingly. Note that all locations of the memory can be addressed with
equal facility; this capacity is known as random access.

Memory that can be used for both read and write operations is called
random access memory (RAM), but it should be thought of as read-and-
write memory, since, as noted, all machine memory is random access. When
the power is turned off, the contents of RAM are lost. Memory with
instructions permanently in place is called read only memory (ROM). One
cannot write to or alter ROM. Note that ROM retains its contents even if the
power goes off, It is usually desirable to keep certain information permanently
in memory. For example, a particular set of instructions is needed by the

CPU Signal
11100011
207 | 11001010 207 | 11001010
=208=| 11100011 208 11100011
o To CPU 01011100
209 | otot1100 | O7/G 209
(a) (b)

Figure 1.3 The write operation. (a) Just before writing to location
208. (b) After writing: note new contents of location 208.

4 ONE/HARDWARE FUNDAMENTALS

CPU Signal
11111111
207 | 11001010 207 | 11001010
=o08=| 11100011 208 | 11111111
209 | 01011100 | From CPU 209 | 01011100
or 110
(a) (b)

Figure 1.4 The read operation. (a) Reading location 208. (b)
Memory after reading: location 208 still has its original contents.

computer to decode a keypress. Manufacturers make these instructions a
permanent part of the computer so that each time a key is pressed. the
instructions in this permanent memory are carried out and the keypress is
decoded.

Central Processing Unit (CPU)

The CPU is the “brain” of the computer. It performs various arithmetic, logic
control, and decision-making functions. Basically, the CPU divides its time
between two modes, or phases, of operation. In the fetch phase, the CPU
reads a byte from memory and then interprets it as either an instruction or
data. In the execute phase, it carries out the instruction, or, if the fetched byte
is data, processes it according to a previous instruction.

The CPU does its job with the aid of several special-purpose memory
locations called registers, which are located in the CPU itself. The
instruction register holds an instruction until it is decoded by a logic circuit.
Another register, the accumulator, is used to carry out operations on two
quantities. For example, suppose that the computer has to add 3 and 7. First,
the 3 is fetched and placed in the accumulator. Next, the 7 is fetched and
placed at one input of a CPU circuit called the arithmetic-logic unit (ALU).
Then the 3, which is in the accumulator, is placed at a second input of the
ALU. The ALU performs the operation and stores a 10 back in the
accumulator. The CPU can then use the 10 for another operation or store it in
the memory.

OUTPUT DEVICES 5

How does the CPU step through a list of instructions? It is assisted by
another register, the program counter, which always contains the address of
the next byte to be fetched by the CPU. In the fetch phase, the CPU signals
the memory for the address given by the contents of the program counter.
Then the program counter is incremented by one. This crucial step ensures
that when the next fetch takes place, the CPU gets the next address on the list.
If the program counter is initialized to the address of the first instruction, and
the last instruction is an END command, the CPU automatically executes all
the instructions, and no more.

In graphics systems, specially designed processors have registers that are
devoted solely to graphics functions. For example, by simply changing the
contents of a color-mapping register, a programmer can rapidly change the
colors of large areas of the screen. (After studying the raster scan system later
in this chapter, you will appreciate the power of this capacity.)

Input/Output (I/0) Unit

Computers would not be useful if they were not able to communicate with the
outside world. Such communication is the function of the I/O unit. There are
several ways to manage I/O, but only one is of particular interest for
computer graphics: memory-mapped I/0. The concept of memory mapping
is quite simple: each input or output device is connected to a unique memory
location, and the CPU reads from or writes to that location. For example,
suppose that a keyboard is connected to location 10. When a key is pressed,
its bit code is placed in location 10, and the CPU can determine what key was
pressed by reading from location 10. Similarly, suppose that a video display is
connected to location 20, using circuitry that flashes the contents of that
location on the screen. To produce a byte of visible output, the CPU simply
writes to location 20. Thus, input and output operations appear to the CPU as
ordinary data transfers.

A given I/O device can be connected to more than one memory location.
For example, a video display that can show twenty-five lines of eighty
characters each represent 2,000 unique areas on the screen, each of which
can be assigned its own memory location. Then a character can be made to
appear in any screen area by writing its code to the corresponding memory
location (see figure 1.5).

OUTPUT DEVICES

For our purposes, the most important output device is the video display. This
is basically a television set that can display characters and graphics with great
clarity. The heart of a video display is the cathode ray tube (CRT).

ONE/HARDWARE FUNDAMENTALS

1000 | Code for A A

B

Screen J

2099 | Code forB |—

Memory

Figure 1.5 Hypothetical memory-mapped video display. The first byte of a
2,000-byte section maps to the upper left; the last byte maps to the lower
right.

Basically, a CRT produces electrons at one end and accelerates them toward
a phosphor-coated screen at the other end. The phosphor glows wherever
electrons strike it.

Figure 1.6 shows the various elements of a CRT. A component called a
cathode emits electrons when it is heated. Another component, the anode, is
maintained at a high positive voltage. The anode attracts the electrons and
causes them to accelerate rapidly toward the screen. A third component,
called a focusing device, concentrates the electrons into a beam so that by the
time they reach the screen, they have converged to a tiny, dotlike area.

An image is created by causing dots to light at selected points on the

Cathode

Phosphor Coating

VS o -
S0 - —

i\ >~ Deflection Plates

Grid

Focusing Device

Figure 1.6 A cathode ray tube (CRT).

