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Preface

To future generations of engineers, the 1970s will be known as the decade of
the microcomputer revolution. Already, the slide rule is only a memory, and
labs are filled with instruments spitting out complex test results that took
days to calculate from raw data less than 10 years ago. Without test automa-
tion, the shortage of skilled technicians would by now have slowed R & D to a
crawl in practically every engineering discipline. And microcomputer
“brains” are transplanting robots from sci-fi movies into factories.

As applications mushroom, IC prices drop. And so, new more complex ap-
plications can be implemented, boosting IC production and lowering micro-
computer costs even more. Chip and board computers seem set to take over
the world. But while microprocessors, ROMs, RAMs, PIAs, and math chips
may be the equivalent to the electronic brain’s gray matter, one thing is
missing: life. Without a program, even the most sophisticated computer is as
dead as the sand from which its ICs are made.

But programs, unlike chips, can’t be mass produced on an assembly line.
They must be custom designed, to suit each application, by software engi-
neers. The number of these specialists, their productivity, and their ingenuity
are the factors that will determine computer use in the 1980s.

As more and more circuits, from op amps to custom logic arrays, become
available off the shelf, yesterday’s systems designer turns more and more into
a software designer. Whether he works on a smart multimeter or a sophisti-
cated video processor, he needs an operating system to make the instrument
tick. So tomorrow’s engineers will not only have to design applications soft-
ware, but systems software—a specialty that used to be reserved for the elite
of the computer fraternity.

But to write systems software, the designer must also know the hard-
ware. In fact, that’s true even for applications software written in assembly
language, and several hardware-oriented articles are therefore included in
this book. Several earlier Hayden books cover microcomputer hardware and
architecture in more detail, including Microprocessor Basics (1977) and Mi-
croprocessors: New Directions for Designers (1976). For an overview of avail-
able microprocessors, their features, and characteristics, the Microprocessor
Data Manual (1978) is an excellent source. All of these books were compiled
from articles published in ELECTRONIC DESIGN.

While assembly languages still account for more microcomputer software
than higher-level languages, the trend is definitely away from assembly.
Why? Assembly-language programs are not only hard to write and debug, but
are firmly tied to one processor. Since new and more powerful processors ap-
pear on the market at a breathtaking clip, it’s getting ever more important
that software be “portable.” After all, hundreds of thousands of dollars may
be invested in a software package, and no company can afford to throw away
such an investment every time a $10 processor is replaced.

Higher-level languages offer such portability—no wonder the section
covering them is the biggest in this book by far. The two languages covered
in depth are as different as two high-level languages can be. BASIC, the Be-



ginner’s All-purpose Symbolic Implgmentation Code, was designed for easy
learning and has been adopted by the hobby community. So today perhaps as
many as 100 BASIC dialects are in use—a characteristic that somewhat de-
feats the purpose of a high-level language. Nevertheless, BASIC is firmly en-
trenched in the microcomputer field, and nearly monopolizes the small-
business market.

PASCAL was also developed as a teaching tool, but certainly not for be-
ginners. It incorporates all the features today’s computer scientists hold es-
sential for a high-level language: strong type checking of data, modularity,
and constructs that encourage structured programming. In fact, some engi-
neers find PASCAL awkward to use, because it imposes so much more “over-
head” than BASIC. But for large programs, it’s important to start out with
clearly defined variables. And if for no other reason, PASCAL is bound to
gain popularity because it’s the basis for the Defense Department’s “univer-
sal” language, ADA.

Clearly, there is room in the software spectrum for efficient assembly
languages as well as for powerful PASCAL. In fact, where speed is most im-
portant, microcode—essentially machine language—is also gaining wider
acceptance. The tradeoffs depend on each application, and Section V provides
some examples.

So where is software headed? In all directions, because that’s where com-
puters are headed. The spectrum of applications for electronic “brains” con-
tinues to widen and will soon encompass all levels of engineering, from toys
and toasters to autos, from communications and energy management to chip
design and advanced research. There’s room for 4-bit micros with a dozen as-
sembly instructions and lightning-fast mainframes that run programs many
megabytes long.

But the mainstream of digital development will be dominated by 8- and
16-bit microprocessors for many years to come, and that’s where most of the
software effort will go—providing the “smarts” for consumer products and
automation from the sales office to the production line. Not everybody will be
happy with the impact those tiny pieces of silicon will have on our lives, but
nobody can stop their great march forward.

MAX J. SCHINDLER
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SECTION I
Software for Any Occasion

This section gives a broad overview of available software and skims the wide
horizon of engineering applications. As the cost of human brainpower rises
while silicon “brains” keep getting cheaper, the design engineer must learn
to shift more and more of his job to these untiring servants.

The first article examines the different kinds of languages for microcom-
puters, from assembly over intermediate (“systems implementation”) to high-
er-level languages. Hardware—software tradeoffs are discussed, and sources
for ready- or tailor-made software are listed.

The second article examines the realm of computer-aided design (CAD)
and its pitfalls. CAD ranges from board layout over circuit analysis to self-op-
timization—and a listing of program sources by CAD application makes it
easy to get started.

Fit Your Microcomputer with the Right

Software Package ... 3
Max J. Schindler, Software Editor, Electronic Design
Computer-Aided Design Beats Trial and Error ............................ 11

Max J. Schindler, Software Editor, Electronic Design






Fit Your Microcomputer
with the Right Software Package

MAX J. SCHINDLER
Software Editor,
Electronic Design

computer explosion. Words like software
crisis and software gap aren’t empty slogans.

But why not simply adapt the mountains of soft-
ware developed for minicomputers? After all, micros
are looking more and more like minis, anyway. Still,
very few uCs are fully software-compatible with their
mini ancestors, and mini software will rarely run on
micros without major revisions.

The problem with uC software is that it will
consume a much larger part of your development
budget than you are accustomed to with minis and
mainframes. When you can buy or assemble com-
puters for under $100, a software package that costs
a hundred or even a thousand times as much, obvious-
ly can’t be considered expendable. With mainframes
or minis the computer is the capital investment, but
with uCs it’s the software that must keep going, while
the computer becomes expendable.

What makes it even worse, with uC software you're
pretty much on your own; you can’t expect much
software support from vendors who sell you $5 chips
or $99 boards. It’s ironic that you lose that help just
when you start playing with higher stakes: a software
error in a uC system can wipe you out.

Say your company makes 100,000 units of a “smart”
product. A software development bill of $100,000
would be no big deal, but spending just $10 apiece to
fix a bug in the field—not to mention a recall—is a
nightmare you want to avoid.

Microcomputer software should be machine-inde-
pendent (or “portable”) so you don’t have to throw it
out every time a better uP comes up, and it should
be reliable so you don’t embed dangerous bugs in your
programs. Yet, uP software should be written quickly
to keep its cost in check. How do you reconcile these
goals?

Not with machine language, which is, by definition
chip-dependent. The next higher level, mnemonic
assembly language, would be better. But chip makers
have been much too busy carving out their share of
the market to worry about standardizing their instruc-
tion sets. Today, disgruntled users are taking vendors
—and the IEEE—to task for the mnemonics jungle,
but you can’t wait for it to be cleared.

Software is threatening to smother the micro-

That leaves only two solutions: Either you put your
own system together (e.g., from bit slices), or you
switch to higher-level languages.

There’s another, and even better, reason for going
to a higher-level language: It’s easier to use.

Look at a simple problem: Selecting the larger of
two numbers in memory, and storing the “winner”
in a third location. In 8080 hexadecimal machine code,
the program looks like this:

3A FF 01 21 D3 00 BE DA 43 01 7E 32 88 01.

These 14 instructions can be compressed into just six
assembly language statements, namely

LDA Y

LX1 H, X

CMP M

JMC GO

MOV A, M

GO: STA Z

In a higher-level language, the whole problem could
well be expressed in a single statement:

IF(X>Y)Z=X;ELSE Z=Y

A programming language that’s easy to work with
can’t help but be welcomed. One reason is that more
and more software is being written not by full-time
programmers, but by design engineers with system
responsibilities. Engineers need higher-level lan-
guages more than ever.

Babel revisited

While use of higher-level languages is attractive,
choosing one can be a nightmare. The crowd of
competing higher-level languages has become the
system designer’s Tower of Babel. There are now
hundreds of languages if you include major dialects.

So which language should you pick? That depends
on how you answer questions like these:

Are you designing an operating system? A small-
business system? A lathe controller? Will your produc-
tion run be 10, or 100, or 1000? Is your background
in hardware or in software? Or do you belong to the
new “mixed-ware” generation?

If your system is intended for a small production
run, you need a quickly learned language that’s also
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easy to debug (Fig. 1). On the other hand, if you are
developing operating software, the code must be
efficient, or it will slow down your system.

While you’re usually looking for a language that
speeds up programming, in the case of an operating
system (OS), you’ll be more concerned about reliabili-
ty. Assembly language, in the hands of a competent
programmer, generates very efficient code, but it’s
also very prone to hard-to-find mistakes. Here, too
higher level languages provide a solution, which will
be discussed later.

Fortunately, a big obstacle to higher-level language
implementation on uCs is crumbling: the cost of
memory. If car prices had followed the same decline
over the last 10 years, a 1978 Cadillac would cost about
$100.

The wordy higher-level languages require not only
more space for program storage, they also need
resident translators (compilers and interpreters) to
convert English-like inputs into machine-readable
object code.

Not all higher-level languages use compilers. Basic,
for instance, mostly employs interpreters. So which
is better? Only you can decide. An interpreter converts
your statements (source code) into machine language
one by one, and is therefore best suited for interactive
use. But in such an application you expect error
messages as you go along, and that can slow you down
badly. Especially if the error messages are their usual
cryptic selves.

Syntax error 37, line 20

Say your input reads PRINTFORB. A simple in-
terpreter might accept that as PRINT FORB, while
a more sophisticated one would ask you whether you
perhaps mean PRINT F OR B. And a really smart
one would realize that it's impossible to print F or
B—without telling when you want which. But on a
small uC, the smart interpreter might well be too slow
for you, even if you can fit it into your memory.
Another drawback is that an interpreter doesn’t create
object code (i.e., save the translated machine lan-
guage). And for highly repetitive tasks, the need to
translate again and again makes execution agonizing-
ly slow.

A compiler, on the other hand, typically doesn’t
complain much until the program has started to
execute. So you may get a cryptic error message for
line 2.1, but no chance to fix the mistake until the
object code for several hundred (or thousand)
statements has been completed. But if the compiler
is any good it will generate (and save) efficient object
code, and execute your program very quickly. Logical-
ly, then, Fortran—a number-crunching language as
the name (formula translator) implies—should be run
with a compiler, and so it nearly always is.

Compare a typical computer run using an in-
terpreted language like Basic (Fig. 2a) with one using
a compiler (Fig. 2b). Compiled programs (e.g., For-
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tran) are typically more complex than interpreted
ones. But compiled runs usually have two moments
of truth: Does it run? Does it work? Getting the pro-
gram to run may be the tougher part because you have
no numerical output to guide you. On the other hand,
if a complex program doesn’t work, you can go right
back to square one: your algorithm may not hack it.

Compilers and interpreters can be single or
multiple-pass. But even a highly optimizing seven-
pass compiler will do you little good if the language
you choose doesn’t suit your needs.

Take microForth, a very flexible language that
permits you to define your own commands in terms
of basic operations. That’s great when you want to
replace a complicated relay chain by a uC. But you
don’t want to define all mathematical functions from
scrateh, if you're trying to solve differential equations.

Before uCs, few engineers got involved with busi-
ness programs—the bookkeeping kind. But now that
small-business systems are the rage, you may well
have to buckle down and learn Cobol. It’s great for
setting up a ledger, but it may take you a day to
describe Ohm’s law in Cobol. Higher-level languages
are often quite specialized, and likely to remain so.

Halfbreed or new species?

Assembly language is efficient, and high-level lan-
guages are easy to use. So why not mate them, and
see what you get?

It’s been done, and the results are usually called
systems-implementation languages, or SiLs. For ex-
ample, MOV D, S turns into D=8, JMP AB becomes GOTO
AB, and RXY may turn into IF (XY) THEN RETURN.

A SIL adds another software interface, and you'll
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PROBLEM
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2. Program development proceeds differently with an in-
terpreter (a), and a compiler (b). In the second case, error

correction requires several stages.

write lengthier source code, but look at what you have
accomplished: You'll isolate the uP from the user, and
you pay practically no speed penalty.

SILs can also make a big difference when you
consider the over-all cost of your system. In Fig. 1,
higher-level languages are shown to be more cost-
effective than assembly language below the crossover
point H. But in comparison with a SIL, assembly
language loses a lot of territory—the crossover moves
down to point S.

Such SILsasMUPRO’sBSAL/80(seeEDNo.13,June
21, 1978: “Operating Systems Enhance uCs”) are often
tailored to a specific uP, with each SIL statement
corresponding to a mnemonic. Yet programs get easier
to write and debug. And if you code your application
program in the same SIL as your operating system’s,
you don’t have to jump back and forth when you check
out your programs at the terminal.

Of course, if you buy a complete uC board, your
choice of operating systems may be limited. Or, you

<ol TASKC FILE
7| (WAITING) SYSTEM

TERMINAL
|

TERMINAL
2

[ s

e TASK B
| (WAITING)
| ‘_r’

TASK A PERIPHERAL
(EXECUTING) INTERFACES

SCHEDULER

3. A simple operating system is just a collection of utility
routines, controlled by a scheduler.
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4. To develop uC software you need at least a terminal
and a uP with the right operating system. In-circuit
emulators then help you debug the hardware.

may not even need one. You can punch in a small
program on a hex keyboard, or load it from a cassette,
or put it in ROM.

So what does an operating system do? It’s essential-
ly a collection of utility routines (Fig. 3). In other
words, to program a “naked” uP for keyboard input,
you have to tell it in detail, character for character,
to watch for a flag, look at a byte, put it in a register,
wait for a moment, compare the new data with the
byte in the register and—if they are the same—file
that byte away, and set another flag. Rather tedious,
you'll find.

I/0 routines are, however, the lowliest parts of an
0S. If you use a disc, one of the routines provides disc
I/0, and the OS itself is stored on the disc. The
combination is called a disc operating system, or DOS.
Of course that part of the system that permits loading
from the disc must be in ROM, and it’s usually known
as a bootstrap loader. As ROM prices keep dropping,
larger, more sophisticated operating systems, includ-
ing compilers, editors—even math libraries—become
practical in ROM form.

The wizardry of OS

An OS is nothing without its scheduler. It keeps
track of the executing program, watches for interrupts
from peripherals, channels program outputs to the
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proper write routines, and keeps an eye on the clock
if that’s required—e.g., for multitasking.

Microprocessors, however, are not the fastest guns
in Silicon Valley, and when you spread them out over
several peripherals, they may keep you waiting. But
why should you want to share them? If a CRT terminal
costs $600 and the uP only $10, it makes sense to share
the terminal, not the processor.

Distributed processing does exactly that. One proc-
essor can, for instance, take over all I/0 functions.
For that, it needs its own software, which is rather
~simple for a repetitive task. Put the program on
resident ROM, and the “real” processor can concen-
trate on your application, and at a faster clip.

If an operating system consists of utility routines,
can’t you put the whole OS on hardware? Yes, it’s
happening. Call it firmware, call it silicon software,
but it still amounts to “hardwired” random logic, and
you wind up with a general-purpose computer with
a special-purpose computer built-in to run it. But
that’s for tomorrow. How do you get your software
done today?

It can prove tedious to develop a sophisticated
operating system for a uC on another uC. Compilation
reportedly can take as long as 24 hours, but even 24
minutes may be intolerable. The solution: a larger
computer. Anything a micro can do, a mini or a
mainframe can do better.

Mainframes mimic micros

Properly programmed, a larger computer can easily
mimic a micro—either at the uP’s actual speed, or at
a much faster clip. You can then use such a simulator
to try out your programs—quickly.

If you're developing a uC operating system, all you
have to simulate is the wP. But for applications
programs, you also have to simulate the OS. If a mini
—or time-shared mainframe—simulates an as-
sembler, the setup is called a cross-assembler. For a
compiled program you need a cross-compiler.

Cross software can save you not only precious time
(because it runs faster), but also a great deal of money.
Working on a large machine, a cross-compiler can, for
instance, provide much more detailed diagnostics than
a uP-based development system. And cross software
is usually “universal” in that it simulates all the
popular uPs, under software control.

Nevertheless, many designers prefer to develop
software on a uP-based development system. One
reason may be that such systems can usually double
as general-purpose computers (Fig. 4).

So, microcomputer software means many different
things to different people. The engineer who works
with mainframes and mature minis rarely has to
worry about operating systems. But with uCs he often
does. Nor does he write much of his software in
assembly (or machine) language. But with uCs he
often must.

50 -
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5. Operating systems for today’s uCs are seldom limited
to assembly language. Higher-level languages are accept-
able to most, with Basic still strongly in the lead.

On the other hand, fewer and fewer OEMs are
putting their own boards together. So the hardware
part of your job keeps shrinking while the software
section keeps growing. The signals are clear: Pure
hardware designers are headed for extinction.

Place your bets

At this point, say you're ready to select the most
suitable language for your uC project—you’ve studied
several candidates at great depth. That’s fine. But
unless you find out what the rest of the world is doing,
you may pick a language that’s marked for ob-
solescence.

A recent ELECTRONIC DESIGN survey of micro-
computer companies may help you with the choice.
The companies identified themselves as marketing the
following: uCs (65%), related hardware (63%), system
software (56%), applications software (53%), develop-
ment systems (49%), microprocessors (35%) and
firmware (35%), while 33% offer some software con-
sultation.

The companies that offer operating systems supply
them on floppy discs (49%), ROM (46%), paper tape
(17%) and cassettes (14%). Other media add up to
another 10%. The sum is well over 100% because many
vendors offer a choice of media.

And what about languages? Only 15% of the offered
operating systems are limited to assembly language.
Of the rest, 45% accept Basic, 25% Fortran, 10% PL/I-
based languages, 7% each Cobol and Focal, 3% Pascal,
and 17% other diverse languages (Fig. 5). But many
respondents pointed out that Fortran compilers are
in their pipelines, and several respondents are working
on Pascal.
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The vendors supplying applications software or
offering a program library revealed that 59% of their
programs are written in assembly language, 17% in
Basie, 13% in Fortran, about 3% each in Cobol and
PL/x, and 5% in other languages (Fig. 6). But don’t
let those numbers fool you.

Asked about new languages to watch for, most
respondents mentioned Pascal, and a few pointed to
PL/M-based languages. Portal, Casual, and C “also
ran.” But enthusiasm for the newcomers was tem-
pered by complaints about poor documentation and
support.

Other gripes about the current software crop may
give you additional clues as to where—or where not
—to place your own bets: “Not compatible—even
within its family” was a farily common refrain. “Tied
to short-lived hardware,” “limited by 8-bit chips,” or
“geared for expensive development system” were also
echoed. Others turned thumbs down on “limited I/0
capability,” “poor reliability,” and “not enough varie-
ty,” but one respondent complained about “too much
variety.”

Many of the complaints stem directly from the
youth of current uP programs. Software, like Beau-
jalais, improves with age—up to a point, that is. You'll
find few programs written in Fortran I still around.

Today, software designers pretty much consider
assembly language obsolete, although it will probably
never disappear. Just try to rotate an array of words
by one bit in Fortran. So it may be wise to pick a
language for your project that permits machine code
(or assembly) inserts. Many programs have critical
passages that are executed over and over. A few
mnemonics in the right place can cut execution time
tremendously.

Another pet peeve that crops up wherever a few
uP engineers gather is standardization. At least 30
dialects of Basic are used on uCs today, and hardly
a week goes by without the announcement of another
SIL to end all SILs. There are 20 languages for
numerical lathe control alone, with two ANSI commit-
ties trying to standardize them. But don’t despair—
the country’s richest customer is also clamoring for
standardization. The U.S. Department of Defense has
already settled on a test language, Atlas, and two
final-round contractors (Honeywell and Stanford Re-
search Institute) will soon be slugging it out for a
general-purpose uC language.

Whoever the “winner” may be, it's generally as-
sumed it will be based on Pascal—a fairly recent
import from Switzerland—that is about to stamp out
Fortran at American universities as well. Pascal
(named after the French mathematician) is a descen-
dant of Algol and was developed under the leadership
of Niklaus Wirth (ETH, Zurich, see bibliography).

Pascal’s main innovation is a variety of structuring
methods for data, especially programmer-definable
types. Structured programming is definitely in. Both
compilers and interpreters for Pascal have been de-
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6. Libraries of uC application programs reflect the de-
velopment of the hardware: assembly language programs
dominate by far. But that's bound to change.

veloped for many mainframes and minis, and are now
in the works for the major uCs.

Software is mostly paper

At this point, you may still think that “software”
is synonomous with programs. If that were so, the
end of a software project would be marked by a single
printout, or cassette, or ROM package. It just ain’t
s0.

Say you're told, “Here is a 4-k ROM with Charlie’s
OTB program. Before he retired he picked the Daily
Double without fail. See if we can place a bet by
tomorrow night.” What would you do?

Chances are only the CIA can afford to crack a
machine-language program. Even if you get a printout
in Basic (without comments), you're probably better
off starting from scratch than trying to unravel
somebody else’s program.

Documentation (at the very least, abundant com-
ments) is essential, but not enough. Even more impor-
tant is an application example—a TTY output from
an actual working session. Say you've written a
circuit-analysis program that accommodates five com-
plex circuit elements. Your program might run on
another computer, but come up with erroneous results
because that machine looks only at your real inputs
and disregards the imaginary ones. Only if you get
the same results can you be sure a program works
on a different machine.

But the paperwork shouldn’t start with your final
report. Only a genius can sit down at the keyboard
and compose good software. The toughest part in
software design is algorithm development, leading to
a detailed flow chart. Coding then comes almost
automatically.



Company Micro Systems Applic. Custom Firm- User library contact

comp. software software software ware and telephone number

Advanced Micro Devices, 901 Thompson ° ° °

Pl., Sunnyvale, CA 94086..

Altek Corp., 2150 Industrial Parkway, ®

Silver Sprmg MD 20904

American Microsystems Inc., 3800 Homestead ® ® L]

Rd., Santa Clara, CA 95051.

Applied Systems Corp., 26401 Harper Ave., ® ] ° [ ) ° M. W. Wyrod

St. Clair Shores, M| 48081. (313) 779-8700

Bently Nevada Corp., P.O. Box 157, L] ] o ®

Minden, NV 89423

Boston Systems Office, 400-1 Totten ® ® ] ® L]

Pond Rd., Waltham, MA 02154

CAP Microsqft Ltd., 14-15 GT James [ ° ® ®

St., London WCH1, England.

Cascade Data Inc., 6300 28th St., S.E. ° ° L] L] Deane Ledsworth

Grand Rapids, MI 49506, (616) 942-1420

Compact Engineering Inc., 1088 Valley ® L

View Ct., Los Altos, CA 94022,

Computer Automation Inc., 18651 Von [ [ ° ®

Karman, Invine, CA 92713.

Computer Inquiry Systems, 516 Sylvan [ L] ° °

Ave., Englewood Cliffs, NJ 07632.

Control Logic, 9 Tech Circle, ° ° D. Tingley

Natick, MA 01760. (617) 665-1170

COSMIC, University of Georgia, Barrow ® Mostly large programs

Hall, Suite 112, Athens, GA 30602. (404) 542-3265

Data General Corp., 15 Turnpike Rd., ) [ ® ] ] Dale Silva

Westboro, MA 01581, (617 366-8911

Digital Equipment Corp 146 Main ® ® ° DECUS

St., Maynard, MA 0175 (617) 493-5086

Dynage Inc., 1331 Blue Hills Ave., [ ] [ ] [ ] [ ] [ ]

Bloomfield, CT 06002.

Dynatech R/D Co., 99 Erie St., ® ° [ ]

Cambridge, MA 02139,

Electronic Memories and Magnetics, L] °

12621 Chadron Ave., Hawthorne, CA 90250.

Evans & Sutherland Computer, 580 Arapeen [ ] [ ]

Dr., Salt Lake City, UT 84108.

FORTH Inc., 815 Manhattan Ave., ® ®

Manhattan Beach, CA 80266.

Futuredata Computer Corp., 11205 S. ® ° ® °

La Cienega Blvd., Los Angeles, CA 90045.

General Automation, 1055 S. East St., ® ) ® ° ® (305) 485-8270

Anaheim, CA 92805.

GNAT Computers Inc., 7895 Convoy Ct., [ [ ]

Unit 6, San Diego, CA ‘92111

Harris Semiconductors, P.O. Box 883, ® ]

Melbourne, FL 32901

Heurikon Corp., 700 W. Badger Rd., [ ] ® L] L]

Madison, WI 53713.

Hewilett-Packard, 1501 Page Mill Rd., o ° ® Several libraries-

Palo Alto, CA 9430 contact field engineer

Hodge, Taylor & Associates Inc., 1161 ) e °® ® ®

Tustin Ave., Orange, CA 92667

Hughes Solid State Div., 500 Superior ° ° L4

Ave., Newport Beach, CA 92663.

IMSAI Mfg. Corp., 14860 Wicks Blvd., ° ] ®

San Leandro, CA 94577.

Infinite Inc., 1942 Wavely PI., ) ® [ ) ®

Melbourne, FL 32901.

Information Control Corp., 9610 Bellanca ® ®

Ave., Los Angeles, CA 90045.

Intel Corp., 3065 Bowers Ave., ° ° ° ° INSITE

Santa Clara, CA 95051. (408) 987-8080

Interactive Science Corp., 60 Brooks L]

Dr., Braintree, MA 02184.

Interdata, Div. of Perkin Elmer, ® ° ° Alma Efthyvoulou

2 Crescent PI., Oceanport, NJ 07757 (201) 229-4040

International Computer Products, 2925 ] ®

Merrell Rd., Dallas, TX 75229.

International Management Services, Inc. Y )

215 Oak St., Natick, MA 01760.




Company Micro Systems Applic. Custom Firm- User library contact
comp. software software software ware and telephone number
Intersil, Inc., 10710 N. Tantau Ave., °
Cupertino, CA 95014.
Kone Oy, Instrum. Div., PL2, 02327, ® [ ] °
Espoo 32 Finland.
Landis & Gyr Co., Zug Central Lab., )
Zug, Switzerland.
Microcomputer Associates, P. O. Box ° ° ®
304, Cupertino, CA 95014.
Microgamma Systems, Inc. 413 Pattie, L] [ [ ] e ) Dave Gilbert
Wichita, KS 57206. (316) 264-2864
Midland Standard, Inc., P.O. Box 38 °® ° ® ® ®
(603 E. Chicago) Elgin, IL 50120.
Milertronics, 303 Airport Rd., ® ® ® L]
Greenville, SC 29607.
Millennium Information Systems, 19020 [ ® ® °
Pruneridge, Santa Clara, CA 95050.
Monolithic Systems Corp., 14 Inverness ° ® [ ]
Dr. E., Englewood, TO 80110.
Mostek Corp., 1215 W. Crosby Rd., [ ) L) ]
Carroliton, TX 75006.
Motorola Integrated Circuits, 3102 N. °® °® Y ° Jeannine Middleton
56th St., Phoenix, AZ 85018. (602) 244-6454
Multisonics Inc., 6444 Sierra Ct., ® ] ®
Dublin, CA 94566.
MUPRO Inc., 424 Oakmead Parkway, ® ° [ ]
Sunnyvale, CA 94086.
National Semiconductor, 2900 Semiconductor ° ° ® ° Georgia Marszalek
Dr., Santa Clara, CA 95051. (408) 737-6181
NEC Microcomputers Inc., 5 Militia [ ] e e ®
Dr., Lexington, MA 02173.
Pieper Electric, Inc., Automation Controls ® ® [ ®
Div., 5070 North 35th St., Milwaukee, WI 53209
Process Computers Systems Inc., 750 N. ® ® ®
Maple Rd., Saline, MI 48176.
Processor Technology Corp., 7100 Johnson ° ® ®
Industrial Dr., Pleasanton, CA 94566.
PRO-LOG Corp., 2411 Garden Rd., ® L]
Monterey, CA 93940.
RCA Solid State Div., Route 202, ° ® ®
Somerville, NJ 08876.
Realistic Controls Corp., 404 W. 35th St., [ ® ® )
Davenport, |1A 52806.
Research Technology Inc., 4700 Chase, ®
Lincolnwood, IL 60646.
Rockwell Electronic Devices, 3310 Miraloma Ave., ® ) ® L]
Anaheim, CA 92803.
R 2 E, S. A.De Courtaboeuf 91403 ® ®
Orsay, France.
Siemens S. A., Chaussee de Charleroi 116, ® ® °
1060 Bruxelles, Belguim
Signetics Corp., 811 E. Argues Ave., ® ® Y
Sunnyvale, CA 94086.
Spantronics Engineering, 702 Bowling [ ] [
Green, Moorestown, NJ 08057.
Teledyne Geotech, P. O. Box 28277 ) [ ® ° [ ]
Dallas, TX 75228.
Texas Instruments Inc., 8500 Commerce ] [ ] [ [
Park Dr., MS 653, Houstan, TX 77036
Vertrol Data Systems Inc., 2500 13th Ave., ] ° ®
Vero Beach, FL 32960
Warner & Swasey Computer, 7413 Wash. Ave. ° [ ] [ L]
South, Minneapolis, MN 55435.
Wintek Corp., 902 N. 9th St., Lafayette, [ ] ) ® [ ]
IN 47904.
Worthington Iinstruments, 1897 Red Fern [ ] o [ ] @
Dr., Columbus, OH 43229.
Wyle Laboratories/Computer Products, e ° ) ® ]
3200 Magruder Bivd., Hampton, VA 28666
Zilog Inc., 10460 Bubb Rd., Cupertino, ° ® ® Bruce Weiner
CA 95014. (408) 446-4666
Zonic Technical Laboratories, 8927 ° o ° ] L]

Rossash Rd., Cincinnati, OH 45236.




