SOFTWARE
ENGINEERING

NTHELNIX/C

ENVRONVENT

‘ \‘\\\ \ 18

Lo
[
g7

WILLIA
CHRISTOPHER J FOX/BRIAN A. NEJMEH

«m:xﬂm»

Software Engineering
in the UNIX®/C
Environment

William B. Frakes

Software Productivity Consori

Christopher J. Fox
AT&T Bell Laboratories

Brian A. Nejmeh
Instep Incorporated

)

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Frakes, William B. (William Bruce)

Software engineering in the UNIX/C environment / William B.
Frakes, Christopher J. Fox, Brian A. Nejmeh.

. cm. — (Prentice Hall software series)

Includes bibliographical references and index.

ISBN 0-13-829763-0

1. Software engineering. 2. UNIX (Computer operating system)
3. C (Computer program language) I. Fox, Christopher John.
II. Nejmeh, Brian A. III. Title. IV. Series.
QA76.758.F73 1991
005.1—dc20 90-24191

CIP

Editorial/production supervision: bookworks
Cover design: Ben Santora
Manufacturing buyer: Kelly Behr and Susan Brunke
Acquisitions editor: Greg Doench
Cover photo: Courtesy Trustees of the National Maritime Museum.
(A cosmographer at work. Drawn by J. Stradanus, late sixteenth century.)

Prentice Hall Software Series, Brian W. Kernighan, Advisor:
©1991 by AT&T

Published by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

Special Sales/College Marketing

Prentice-Hall, Inc.

College Technical and Reference Division

Englewood Cliffs, NJ 07632

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-8297k3-0

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pty, Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

For Gloria—Bill Frakes

For Susan—Chris Fox

For my wife and friend Laurie and our children
Mary Elizabeth and Emily Elise—Brian Nejmeh

Preface

This is a book about software engineering in the UNIX®* programming environment
using the C programming language. There are already many books about software
engineering, about the C language, and about the UNIX operating system. This book is
different because it puts the tools and techniques offered by the UNIX/C environment
into the context of a software engineering life cycle. This approach, based on software
engineering courses we have taught at Rutgers and Columbia, has several advantages.
First, it helps to make clear how these tools and techniques contribute to the overall
goals of a software engineering project. Second, it clarifies the relationships among the
tools and techniques. Finally, it shows which parts of the life cycle have strong tool
support and which do not.

In selecting texts for software engineering courses, we found that many failed to
provide examples of life-cycle products such as requirements documents and design
documents. Students using these texts were often confused when given the task of creat-
ing life-cycle products for class projects, and we have been asked by practitioners for
examples of life-cycle products as well. In this book, we present life-cycle products we
created in building ccount, a small C metrics tool.

One question a reader of a book like this one might ask is: How much of the large
and diverse field of software engineering does the book cover? This book is aimed pri-
marily at those software engineers responsible for generating, testing, and documenting
elegant, reliable, efficient, and maintainable code. Our bias, therefore, is strongly
toward the fechnical rather than the manager ial aspects of software engineering, a dis-
tinction we make as follows:

*UNIX is a registered trademark of AT&T. Hereafter we will use the abbreviation UNIX/C to stand for
UNIX system C programming language.

Preface ix

e The managerial side of software engineering is concerned with project planning
and scheduling, software cost estimation, project monitoring, project organization,
and staff management.

e The technical side of software engineering is concerned with software design and
implementation, software testing and quality assurance, and software maintenance.

In addressing the technical side of software engineering, we do not mean to belittle or
slight software engineering managers. In fact, we believe that managing a software pro-
ject is among the most difficult and important of all software engineering tasks. There
is. more than enough to be said about the technical aspects of software engineering in
the UNIX/C environment to fill this book, however. In addition, managerial practices
are inherently more generic than technical practices; managing a project in the UNIX/C
environment is not very different from managing a project in other programming
environments. Consequently we have little to say about software project management
not already discussed in other excellent books.!!1 21 B1 41 [51[61 (7]

We hope that this book will be useful as both a tutorial and a reference for anyone
building systems in C under some version of the UNIX operating system. The book
should be of interest to designers, C programmers, and testers. Despite its technical
orientation, this book should also be useful to managers responsible for products
developed in the UNIX/C environment because it provides a catalog of the methods,
tools, techniques, and practices available to their staff. This book should also be useful
to students of computer science and engineering studying software engineering.

In our discussion we assume that our readers know how to program, and are at
least novice users of the C programming language and the UNIX operating system. We
do not assume any familiarity with software engineering, although, again, our survey of
the field purposely neglects management issues, so our discussion of software engineer-
ing is incomplete.

One decision we faced in writing this book was whether to discuss UNIX tools
that are not generally available. We decided to discuss the best tools we know of for
UNIX/C development regardless of their availability. These tools demonstrate technolo-
gies to solve certain problems; a reader familiar with a technique for solving a problem
can build the tool for himself or herself if necessary. For similar reasons, we also dis-
cuss needed tools that seem feasible but do not currently exist.

ACKNOWLEDGMENTS

Many people have contributed to this book. We would like to thank the following at

Bell Laboratories: Tom Beattie, Susan Crocker, Nancy Firestone, Ed Fuchs, Judith

Grass, Jeff Hooper, Brian Kernighan, Jim Krist, David Lubinsky, and Dave Neal. Our

thanks to Steve Simmons at SUN Microsystems and P. J. Plauger of Plauger Associates

for their helpful reviews. A special thanks to all our students at Rutgers and Columbia,
especially Fritz Henglein, Maria Leone, and Bud Moore.

Chris Fox

Bill Frakes

Brian Nejmeh

Preface
REFERENCES

1. Boehm, B., Software Engineering Economics. Englewood Cliffs, N.J.: Prentice Hall, 1981.
2. Brooks, F. P., The Mythical Man-Month. Reading, Mass.: Addison Wesley, 1975.

3. DeMarco, T., Controlling Software Projects: Management, Measurement and Estimation. En-
glewood Cliffs, N.J.: Yourdon, 1982.

4. DeMarco, T., and T. Lister, Peopleware: Productive Projects and Teams. New York: Dorset
House, 1987.

5. Fairley, R. E., Software Engineering Concepts. New York: McGraw-Hill, 1985.

6. Pressman, R. S., Software Engineering: A Practitioner’s Approach. New York: McGraw-
Hill, 1987.

7. Vick, C. R., and C. V. Ramamoorthy (eds.), Handbook of Software Engineering. New York:
Van Nostrand, 1984.

Contents

PREFACE viii
CHAPTER1 INTRODUCTION 1

Software Engineering 1

UNIX System and C Language 2

State of the Art in Software Engineering 2
Software Products, Projects, and Methodologies 3
Software Project Size and Type 4

Software Life Cycle and Life-Cycle Models 5
Attributes of Software Quality 6

Goals and Organization of Book 8

. I T S S
oNOOUR WD

CHAPTER2 CONCEPT EXPLORATION AND REQUIREMENTS
SPECIFICATION 10

2.1 Concept Exploration Phase 10

2.2 Requirements Specification Phase 13

2.3 Prototyping Aid in Early Phases of Life Cycle 17
2.4 Conclusion 24

vi
CHAPTER 3

3.1
3.2
3.3
3.4
3.5

CHAPTER 4

41
4.2
43

CHAPTER 5

5.1
5.2
5.3
54
55
5.6
57

CHAPTER 6

6.1
6.2
6.3
6.4

CHAPTER 7

7.1
7.2
7.3
7.4

CHAPTER 8
8.1

8.2
8.3

SOFTWARE DESIGN PROCESS 26

Software Design Concepts and Principles 27
Software Design Methods 31

Graphical Design Tools 39

Program Design Languages 41

Contents of a Design Document 42

PROGRAM READABILITY 46

Internal Documentation 47
External Documentation 63
Conclusion 64

LOW-LEVEL PROGRAMMING 66

Parameterization 66

C Preprocessor 70

C Function Libraries 73
Expressions 74

TypesinC 76
Improvement of Efficiency 78
Conclusion 80

HIGH-LEVEL PROGRAMMING 81

Implementation of Modules in C 81

C Modularization Example 86

Module Size and Complexity Standards 90
Conclusion 91

UNIX TOOLS FOR CODING PHASE OF LIFE
CYCLE 93

Program Generation Tools 94
Static Analysis Tools 105
Dynamic Analysis Tools 108
Conclusion 114

SOFTWARE TESTING AND QUALITY
ASSURANCE 117

Software Quality Assurance 117
Reviews 118
Code Inspections 121

Contents

Contents N vii

8.4 Process Audits 124

8.5 Testing Process 125

8.6 Who Should Test Software 126
8.7 Testing Resource Allocation 127
8.8 Regression Testing 137

8.9 Debugging 139

8.10 Testing of ccount 142

CHAPTER9 SOFTWARE MAINTENANCE AND CONFIGURATION
MANAGEMENT 148

9.1 Software Maintenance 148
9.2 Software Configuration Management 152

CHAPTER 10 FUTURE TRENDS 161

10.1 Evolution of UNIX Programming Environment 161

10.2 User Interfaces 162

10.3 Data Repositories 163

10.4 Project Management Support 165

10.5 Document Production Support 166

10.6 Front-End Support 166

10.7 Conclusion 166
APPENDIX. A ccount PROJECT DOCUMENTS 169
APPENDIX B ccount SOURCE CODE 201
APPENDIX C ENGINEERING DOCUMENT TEMPLATES 234
APPENDIXD RULES OF C PROGRAMMING PRACTICE 240
APPENDIX E CODE INSPECTION CHECKLIST 244
APPENDIX F REFERENCES 249

INDEX 256

Infroduction

1.1 SOFTWARE ENGINEERING

On 15 January, 1990, AT&T’s nationwide long-distance network was crippled for nine
hours by a software fault. Millions of calls were blocked. Businesses such as travel
agencies that depend on telephone service were virtually shut down. This was yet
another demonstration of the importance of software in our lives and the sensitivity of
our society to software errors.

The discipline that deals with such problems is called software engineering.
Software engineering has been a recognized discipline only since the late 1960s. Still in
its infancy, software engineering lacks a firm scientific basis. Indeed, software engineers
disagree about the definition of the field itself. We define software engineering as the
technical and managerial discipline concerned with the systematic invention, production,
and maintenance of high-quality software systems, delivered on time, at minimum cost.

Software engineering has borrowed from many fields including computer science,
mathematics, economics, and management theory. We focus on one part of this broad
field—how to use a programming environment to produce high-quality software sys-
tems. Specifically, we discuss how to write such systems in the UNIX®* System C
language environment. Our focus is thus on the technical rather than the managerial side
of software engineering.

*UNIX is a registered trademark of AT&T.

2 Introduction Chap. 1

1.2 UNIX SYSTEM AND C LANGUAGE

UNIX is a time-shared operating system originally written by Ken Thompson of Bell
Laboratories in 1969. UNIX has two main parts. The UNIX kemel is a set of frequently
used functions that are kept in main memory. The kernel schedules jobs, controls
hardware, and manages input and output. The UNIX shell interprets commands sent to
the system. “UNIX” is also often used to denote the set of tools and utilities—editors,
compilers, software engineering support tools, and so forth—that typically come with
the system. Many versions of UNIX exist. The best known are AT&T UNIX System V,
and Berkeley UNIX—officially known as UCB 4.xBSD. Versions of UNIX are simi-
lar, but differ in their implementations and in the tools and utilities they provide. For
example, several UNIX shells are available: the Bourne shell, the C shell,/'! and (our
favorite) the Korn Shell.l?! All these shells can be used with different kernels.

The C language was written in 1970 by Dennis Ritchie. Thompson and Ritchie
rewrote the UNIX kernel in C in the early 1970s, and since then, UNIX and C have
been linked. C was originally written as an alternative to assembly language for sys-
tems programming. As such, it allows a programmer great freedom—it is lax, for
example, in its handling of data types. It also allows low-level access to the machine.
C is known for producing fast, efficient code.

C has become enormously popular. Besides systems programming, C is used to
build large-application software systems. The latest generation of large switching sys-
tems at Bell Laboratories, containing millions of lines of code, for example, is written
in C. Whether C is a good language for large-system software engineering is the sub-
ject of heated, often religious, debate. Until enough empirical data are gathered to
answer this question, all we can say is that it has been used successfully to build large
systems.

One indication of the popularity of UNIX/C is the many books about them.
These books describe both the C language and the UNIX system, and give detailed gui-
dance to their use. In this book we do not provide detailed guidance to the use of the
tools and techniques we discuss. Our purpose is to put UNIX/C in a large software
engineering system context—to show how UNIX/C can be used throughout the life
cycle to support a software engineering project.

1.3 STATE OF THE ART IN SOFTWARE ENGINEERING

Although many important technical contributions have been made to software engineer-
ing (for example, the development of high-level programming languages) the state of
the art is far from what software engineers would like. Common practice is worse.
Software development projects often have low productivity, and software products are
often full of faults and do not meet user needs. To illustrate the extent of the problem,
consider the findings of a study of nine Department of Defense software development
contracts totaling $6.8 million:!!

e On software that was delivered but never successfully used, $3.2 million was
spent.

e On software that was paid for but not delivered, $1.95 million was spent.

Sec. 1.4 Software Products, Projects, and Methodologies i 3

® On software that was delivered and used, but had to be extensively reworked or
later abandoned, $1.3 million was spent.

e Out of the $6.8 million, $119,000 was spent on software that was used as
delivered.

Unfortunately, such waste is common. Most large technical organizations can chronicle
legendary software disasters.

Although software project failures are often attributed mainly to managerial prob-
lems, technical sources of waste and inefficiency contribute to project failures, and cer-
tainly contribute to high costs. For example, one well-known source of waste attribut-
able in part to technical problems is failure to reuse software. DeMarco estimates that
the average project reuses only 5 percent of code, despite evidence that much more code
could be reused.!*! Technical problems about how to design, catalog, store, and retrieve
reusable software components are not yet solved. One reason the UNIX/C software
development environment is important for software engineering is that UNIX contains
many small reusable tools. Reusable function libraries are a staple of the C language.
We discuss these issues in greater detail in Chapter 6.

What can be done about the poor state of software engineering? One approach is
better education about the problems of software engineering, and about the best avail-
able tools and techniques to solve them. This task is not adequately addressed by
academic and industrial courses in programming and software engineering. In our
experience doing and teaching software engineering, hiring and supervising software
engineers, and interacting with developers on many projects, we have observed a
widespread lack of knowledge about software engineering problems, and a host of bad
practices. Some unfortunately common observations follow:

e Managers with no background in software engineering responsible for technical
work in major software projects.

¢ Employees with little software engineering experience responsible for difficult
technical tasks, such as the design or implementation of major portions of
software systems, with inadequate technical training and guidance.

e Graduates of computer science programs at major universities who have never
heard of software engineering, let alone the tools and techniques for producing
high-quality software products. Many computer science programs do not offer
courses in software engineering, or if they do, the courses are optional and focus
on programming.

1.4 SOFTWARE PRODUCTS, PROJECTS, AND METHODOLOGIES

Software is some executable object such as source code, object code, or a complete pro-
gram. A software product is software plus all the supporting items and services that
together meet a user’s needs.” A software product has many parts including manuals,

TSome authors refer to what we have called “software products” as simply “software.” We prefer our
terminology because it more closely reflects common usage.

4 Introduction Chap. 1

references, tutorials, installation instructions, sample data, educational services, techni-
cal support services, and so forth. Software engineers produce software products, not
just software.

Anything produced by a software project is a work product. Work products
include (1) engineering documents used to define, control, and monitor the work effort;
(2) executable objects like prototypes, test harnesses, and special purpose development
tools; and (3) data used for testing, project tracking, and so forth. Software engineers
help produce most work products because they have technical content. In fact,’ software
engineers often spend more time working on nonsoftware work products, especially
documents, than they do working on software™ Y Wegey

1.5 SOFTWARE PROJECT SIZE AND TYPE

Software projects come in many sizes. One way to classify them is by lines of code as
in Table 1.1.

Table 1.1: Project Size Categories

Category Programmers Duration Lines of Code Example
Trivial 1 0-4 weeks <1K Sort utility
Small 1 1-6 months 1K-3K Function library
Medium 2-5 0.5-2 years 3K-50K Production C compiler
Large 5-20 2-3 years 50K-100K Small operating system
Very large 100-1000 4-5 years 100K-1M Large operating system
Gigantic 1000-5000 5-10 years >1M Switching systems

The largest software projects employ thousands of programmers, managers, and support
personnel. System files and functions number in the tens of thousands and may be dis-
tributed across many machines. Changes made to one file may affect hundreds of
others—and all the people who work on them. It is the complexity of the inter-
relationships among all these system elements that distinguishes software engineering in
the large. It is difficult for someone who has not worked in a large project environment
to appreciate this complexity. This is one barrier to teaching software engineering. Peo-
ple familiar with software engineering techniques for small projects may think that these
techniques will scale up to large projects. This is usually not so. Software engineering
tools, for example, sometimes do not work for large or distributed systems.-Informal
change management techniques adequate for a group of five developers will be disas-
trous for a group of fifty.

-+ . . P

*+A line of code is a common measure of program size, but there is not a standard definition of what a
line of code is. In this book, a line of code is a source code file line containing at least one language token
outside a comment.

Sec. 1.6 Software Life Cycle and Life-Cycle Models . 5

Software engineering practices are important for projects of every size. For large,
very large, or gigantic projects, they are indispensable, because systems of such size
could not be built without them. There is empirical evidence that project size has a
major effect on important project attributes, such as individual programmer produc-
tivity, which decreases exponentially as system size and development team size
increase. The reason for this effect is probably the need for more coordination and
communication on a big project. Conte et. al.l! provide a good discussion of empirical
studies of factors affecting software projects.

Another factor that varies with project size is the amount of required project docu-
mentation. A trivial project, say a simple source code metrics program like ccount,
may not need any engineering documents, and no more user documentation than a
manual page. In contrast, a medium-sized project, such as a C compiler, should have a
set of engineering documents that includes at least a concept exploration and feasibility
document, a requirements document, a project plan, design documents, a test plan, and a
project summary. The user needs at least a manual, and typically also tutorials, quick
reference cards, installation instructions, and so forth. It would be wasteful (and
discouraging to the developer) to require as much documentation for the metrics utility
as for the C compiler. Nevertheless, such demands are sometimes made. This is a com-
mon example of software engineering practices inappropriately applied.

Projects differ in type as well. The performance requirements, designs, implemen-
tation strategies, testing methods, and problems encountered differ substantially for
operating system programs, scientific application programs, business application pro-
grams, and embedded real-time systems. Productivity differences between different
types of software projects have frequently been observed.!®! Software engineering prac-
tices must be adapted to projects in different domains.

The set of tools, techniques, and methods used by software engineers in a
software project is called a project methodology. Choosing the right methodology for a
project is difficult. The lead software engineer must form a project methodology by
selecting from the available tools, techniques, and methods those appropriate for his or
her project.

1.6 SOFTWARE LIFE CYCLE AND LIFE-CYCLE MODELS

Project methodologies are applied within the context of a software life cycle—the series
of developmental stages, called phases, through which a software product passes from
initial conception through retirement from service. A life-cycle model is a representation
of the software life cycle that may also include information flows, decision points, mile-
stones, and so forth. We stress that a life-cycle model is only that: a model. No real pro-
ject will behave exactly as specified by a life-cycle model, and the divergence may be
large.

The phases of a life-cycle model may be temporal phases—forming a sequence in
time—or logical phases—representing steps not forming a temporal sequence. For
example, implementation logically precedes testing, but parts of the implementation and
testing phases may occur simultaneously. Thus a life cycle model using logical phases

6 Introduction Chap. 1

may have an implementation phase before a testing phase, whereas a model using tem-
poral phases may have these phases overlap. A life-cycle model may be used prescrip-
tively to mandate life-cycle events or descriptively to record life-cycle events. Many
software life-cycle models have been proposed.!®! Most models agree on the fundamen-
tal phases of the life cycle, but differ in terminology, emphasis, flexibility, and scope. A
detailed prescriptive temporal model is useful in a project plan because it maps the
project’s intended course. Descriptive temporal models are useful in documenting the
life cycle and analyzing a project when it is over.

The life-cycle model we use in this book is a general prescriptive logical model. It
is general in that it presents only the logical sequence of life-cycle phases. Although it
would be better to present a specific temporal model, no such model will fit all software
projects. Like other parts of a software methodology, specific life-cycle models must be
constructed for specific software projects.

Our model is a standard waterfall model'”! consisting of the following logical
phases:

e Concept exploration and feasibility analysis phase. ldentify a need to automate a
process and analyze project feasibility.

e Requirements specification phase. Analyze and document system requirements.
The requirements document must clearly state what the projected system will do,
what elements the software product will have, and what characteristics the product
elements must have.

e Design phase. Design the system and document the design. The design document
specifies how to build a software system to satisfy the requirements.

e /mplementation phase. Write the software.
e Testing phase. Exercise the software to verify that it satisfies its requirements.

® Maintenance phase. Following deployment of the software product, correct faults;
change and enhance the system.

This model, like any other, only loosely represents how a project actually works (Fig-
ure 1.1). Too many unforeseen things happen on a software project for any model to be
more than a general guide. The waterfall model is often criticized as having little to do
with project realities. Despite this, it is still the model most often used on large pro-
jects. Furthermore, it is a useful pedagogical framework, which is why we adopt it
here.

1.7 ATTRIBUTES OF SOFTWARE QUALITY

Quality is linked to meeting user needs. One way to link quality with user needs is to
follow Juran!® in defining quality as fitness for use. Juran distinguishes two aspects of
fitness for use: the collection of product features that meet user needs and freedom from
deficiencies. A product with a collection of features that enables it to meet a user’s
needs makes for customer satisfaction. Freedom from deficiencies avoids customer dis-
satisfaction. Together these aspects of a product make it fit for use, or of high quality.

Sec. 1.7 Attributes of Software Quality 7

Concept exploration

and
feasibility analysis \

Requirements
Specification \
e Design _\

- Implementation \

< Testing \

Maintenance Figure 1.1 Waterfall Model of Software
Life Cycle.

The quality of finished software products depends largely on the quality of the
work products generated during development and maintenance. The notion of quality
as fitness for use yields attributes for evaluating the quality of work products based on
the needs of the users of the work product. For example, requirements specification
documents are used by customers and developers to record decisions and agreements
about the product to be built, by designers as a definitive source of information about
the product to be designed, by documenters as a source of information about how the
product will behave and how it should be used, and by testers as a source of informa-
tion about how the system should behave in response to test data, and about its perfor-
mance parameters. These needs motivate specific quality attributes for requirements
specification documents—for example, that all requirements be testable, precise, and
clear; that performance constraints be explicitly stated; and so forth. Similar quality
attributes can be generated for all work products; it turns out that most work products
share a core set of quality attributes that includes the following:

e Correct. The definition of correctness varies. For example, a requirements docu-
ment is correct if it accurately describes needed functions and properties of a pro-
duct; software is correct when it meets itS input-output requirements; program
documentation is correct when it accurately describes a program.

o Efficient. This attribute refers to how well software uses computational resources.
For example, quicksort is more efficient than bubblesort because it can sort a list
with fewer machine instructions.

® Maintainable. This attribute can be applied to any work product but is most often
applied to software. Maintainability is how easily a work product can be
corrected, changed, or enhanced.

e Portable. Refers to how easily software can be moved to a variety of environ-
ments.

® Readable. This attribute applies to any textual work product. It refers to how easy
it is for a person to read and understand the work product.

