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PREFACE

These exercises are intended to assist students in under-
standing the elements of set theory. The arrangement of topics fol-
lows the development found in' Paul Halmos’ Naive Set Theory, al-
though a student studying some other textbook should find the pro-
blems useful. The exercises are, on the whole, routine explorations
of the definitions and theorems of set theory and are not puzzle or
contest problems. The problems vary somewhat in difficulty, but
nearly all should yield to the average student, provided he is endowed
also with persistence. It is the author’s belief that maximal benefit
will accrue to the student who.does not look at the ¢ \swers before he
himself has some solution to check. A sense of pride in this matter
on the student’s part will be a productive attitude for him. There are,
of course, multiple answers possible for many problems, while only
one is offered in the answer section. Perhaps the student may happily
find more elegant solutions than those given.

At the beginning of each chapter there is a brief compilation
of results taken from.Naive Set Theory (NST) and sometimes else-
where that are relevant to the exercises of that chapter. There are
exercises in algebra involving monoids, semigroups, groups, rings,
fields, vector spaces, and algebras. All necessary definitions are in-
cluded, but references to helpful books are also included. These al-
gebraic exercises are included in expectation that the student will
have previously completed an undergraduate course or two in algebra
and will profit from applications of the abstract concepts of set theo-
ry to the familiar. In the chapter on ordinals the exercises lead to a
proof of the compatibility of the recursive and set theoretic treatments
of ordinal arithmetic. Although it ought to be obvious, it will be stated

that no originality is claimed for the exercises.
L.E.S.
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CHAPTER 1

ELEMENTARY CONCEPTS
10 x ¢ A reads x is a member (or elément) of set A. (NST p2)
x { A reads x is not a member of 'set A. (NST p2)

Axiom of Extension. A = B means x ¢ A iff (if and only if) x ¢
B. (NST p2)

Definition of Subsets. A T B means if x ¢ A then x ¢ B. (NST p3)
A S B means ACB and A # B, A is a proper subset of B.

If S(y) is a condition, then x e {y| S(y)} iff S(x). (NST p§4, 10)

Axiom of Specification. If A is a set and S(x) is a condition, then
{x] x ¢ A and S(x)} is a set. (NST p60)

Axiom of Pairing. If A and B are sets, then there exiéts aset C
sothat A ¢ C and B ¢ C. (NST p9)

Definition of Pair. {A, B} = {x| x=A or x.= B}. (NST p9)

Axiom of Unions. If ‘@ is a set, then there exists a set U such
that if x ¢ X forsome Xe C, then x ¢ U. (NST pl2)
Definition of Union. U € = {x| x ¢ X for some Xe¢ C}. (NST p12)

Definition of Intersection. For C #£ é, NC = {x|% ¢ X for all
X e C}. (NST p15)

Definition of Relative Complement. A—-B = {x| x ¢ A and x { Bl.
(NST pl17) If the set A is understood from context, denote
A-B by B’
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Axiom of Powers. If E is a set, then there exists a set P such
that if X CE, then X ¢ P. (NST pl9)

Definition of Power Set. $E = {x| x C E]. (NST p19)
Definition of the Empty Set. # = {x|x # x}.

1.1 The following symbols are often used to study the algebra of

sentences:

~ representing and
~ representing or
— representing not
==> representing if...then..., implies
<==> representing if and only if
3 representing there exists, for some
Vv representing for all

These symbols are employed according to the following rules

ot construction for sentences. If p and q are sentences, then
p~q p~q, —p p=>gq, p<=> q are sentences. If p
is a senténce, then 3 x: p, Vx: p are sentences. For example,
given that » p, q, r are sentences, it is verified that — [(p ~ — q) v r]
is a sentence in the following way. ¢ is a sentence; therefore — g
is a sentence. p and — g are s’entelices; therefore p ~—gq is a
sentence. p ~ —q and r are sentences; therefore (p ~—gq) ~r
is a sentence. (p ~—gq) vr. is a sentence; therefore— [(p ~—q)
v 1] is a sentence.

" The truth values of the sentences constructed from the first
five symbols are determined formally from defining truth tables.
These are (using 1 as a symbol for true and 0 for false):

P ¢ p-~q P @ p-~gq p —p
1 1 1 1 1 1 " 0
1 0 0 1 0 1 1
0 1 0’ 0 1 1
0 0 0 0 0 0



P g p=>gq P q p<—>gq
1.1 1 11 1
1 0 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

For example, if p is a false sentence and ¢ is a true sentence,
then p ~g, p<=>q arefalseand p—>gq, pvgq — p are
un.e. a .

Two sentences with the same truth values are equivalent (=).
Equivalences can be systematically verified 'using the truth tables
iteratively as in these examples.

p=>q =—p g

‘p § p=>q —p —Pp~q The column for p = ¢
1 1 1 0 1 and the column for
1 o 0 0 0 — P v ¢ contain the
. \ 1 1 same truth values.
0:-0 1 1 1
p=>q=—q=>—p p g —g—p —g=>—p p=>gq
11 0 0 1 1
10 1 0 0 0
0. 1 0 1 1 1
00 1 1 1 1

p~(@~vr) = (p~q) v(p ~r)

p~lgvr) p~q p-~r (p~q)vlp~r)

P 9@ t gv~r

1 11 1 1 1 1 1
1 10 1 1 1 0 1
1 01 1 1 0 1 1
1 0 0 O 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 1 0 0 2 0
0 00 O 0 0 0 0
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Using truth tables, prove each of the following equivalences.

a) p=>gq =—p~vgq

b) p=>gq = — (p ~=q)

©). p~gq = = (—p ~—gq)

d p=>q = —qg= —p

e) p=>q = (p~—g)l=>—p

f) p=g¢ = (p ~—q)= ¢

g) p=>gq = (pr=q)=(r ~=7r)
h) p<=q = (p=>4q) ~(g= p)
i) p-~q = q~p

D pva = q-~p

k) p~(gvr) = (p ~q)~(p ~r)

) pev(gan= (pvg ~(pv1)

m) p = —(=p)

n) p~(gar)=s (p~g)~r

o) (pvq@dvr = p-(gvr)

P P ~p =p

Q pP.ep =p

This exercise suggests how logic is formalized. The student
interested in pursuing the subject should consult one of the texts on
logic suggested in the reference list.

1.2 The quantifiers v and 3 are related as follows: Vx: p
is equivalent to — (3x:— p), or in words, (for all x, p is true)
is equivalent to (it is not the case that there exists an x such that
p is false).

Prove this equivalence: — (Vx): (x ¢ X =>x ¢ ¥) s
equivalent to (3x):(x ¢ X ~ x { ¥). Write out a statement of
this theorem using the word subset.
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1.3 Prove that equality for sets is reflexive, symmetric, and
transitive; that is, prove these theorems:
a) X = X for all sets X.
b) If X =Y, then Y = X forall sets X, Y.
c) Forallsets, X, Y, 2, if X=Y and Y = Z, then
X = 2.

1.4 Prove that inclusion for sets is reflexive, antisymmetric, and
transitive; that is, prove these theorems:

a) X CX forall sets X.

b) XCY and YC X imply X = Y forall sets X, Y.

¢) Forallsets.X, Y, Z if XCVY and YC Z then X C Z.

1.5 Let AS B and Bgc. Prove that AEC.
1.6 Let ACB and BCC and C C A. Prove that A= B =C.

17 Let PCU and Q CU. Define P’ = {x|x ¢ U and x } P}
and Q similarly. Prove that P C Q iff Q'C P’". Prove further-
more that P = (P’)". Note: iff is an abbreviation for if and only if.

1.8 Prove that § C P. Provethat PC @ iff P = 0.

1.9 By definition P U Q = {x|x ¢ P or x ¢ Q} = UIP, Q}
PNQ-=ix|xePandx e Q} = NP, Q}.
H P and Q are sets, then provethat P U Q and P N Q are sets.

1.10  Prove that @ is a neutral element for the union of sets, i.e.,
that X U@P = U X = X forall sets X.

1.11 Let XU Y = X forall sets X. Prove that ¥ = @.

‘1.12 Provethat X N'@ = @ forall sets X.

1.13  Prove the following theorems:
a) The commutativity of union, PU Q = Q U P.
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o

b) The commutativity of intersection, PN Q = : onpP

c) The associativity of union, P U (Q U R) =(PUQ
U R.

d) The associativity of intersection, P N(Q NR) =
(PNQ)NR

e) The distributivity of intersection with respect to union,
PN(QUR)=(PNQU(P N.R).

f) The distributivity of union with respect to intersection,
PU(@NR)=(PUuQ)n(PUR).

. g) The idempotency of union, P U P = P.
h) The idempotency of intersection, P N P = P.

1.14 Define 0 = #, 1=0uf0}, 2= 1uU {1}, 3 = 20U {2},

=3 U {3}. Provethat 0, 1, 2, 3, 4 are sets. These sets which
are denoted by the symbols used for thé nonnegative integers wxll
show up frequently m these exercises.

1.15 Express the set 4 using only the synjbols] 1,8, , .

1.16  Prove each of these statements true or false:
a) 1¢2 c)1NnN2=0 e)(0 N2 e1.
by 1C2 d 1u2=2 ‘

1.17  In order to generalize the construction of 1.14, assume an in-
tuitive knowledge of the natural gumbers (nonnegative whole numbers)
and proof by mathematical induction. For each natural number n de-
fine a set S, 'as follows: Sy =0, S  ,=S UIS ]} Prove

that S, is a set. Prove'that if S_ is a set, then S,4p is aset.
Conclude that S_ is a set for each natural number n. Finally,
identify n and S_; that is, use the symbol n to denote the satural
aumber as intuiti\{ely understood and the constructed set. These sets,
0, 1; 2, 3,... will be used in succeeding exercises.

1.18  Of which of the following sets is x a member, X a subsei.
x neither a member nor a subset?



1.2

Elementary Concepts

A) Hzxl, yi D) ixi-{ix}}
B) x E) xlux
C) #nx F) ixjuv g}
Show that

a) U "8, b{'éiy- ’-av dy e!; ’ﬂ, !!i = 181 bl c, d’ e, f}
b)-Nila, b cl, la, d el la fll = la}

oot =1

d) N} =
e) UIA] = A forall sets A
f) n'm = A forall sets A.

Express the following sets using the sets 0, 1, 2, etc..

g, Ug, P¢, UUp, P98, ULUD, ?9%90.

1.21
1.2

B
124

Letx-=!12,5i 4, {41}. Find NWUX ~ 4).

Construct (Ur1)” whére A'= 3-4 tor. any set A

"Construct N Y(P2-2) .

Let X = {i{1, 21, {1}, 1{L, O}}} Construct UX, NX,

UUX‘ nx, unx, NUXx.

125 Let X = m 2}, {201, 11, 3H Constmct ux, Nx, UUX,
NN, Uﬂx ﬂUX
].26 Let P, Q, R be subsets of. U and let the relative comple-

ments ( °) be with respect to. U. Then prove the following:

a) PcCQ iff PNQ =§

b)) -PCQ iff PPUQ =

c) PcQif PNQ)cP .

d PcQ iff (PNQEHcCcQ
~e) PcQ iff (PNQ)c(RNR).

1.Z7] Provethat AU B = A iff BC 4.
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'1.28 Provethat AN B = A iff ACB.

'1.29 Give an example of two sets A, B such that

(NA) Nn(NB) £ N(A N B).
1.30 Prove that (nA)n(ﬂB) c N4 nB).

1.31 Give an example of two sets 4, B such that ?(4 U B) #
F4) u @ B.

1.32  Assuming a knowledgé of R, the real numberé, what subset
is described here? {x|x? > 2} N {x| |x-2| < '|x+3|¥-

1.33  Detine A+ B = (A-B) U (B-A) to be the symmetnc dif-
ference of the sets A and B. Prove the following: '

a) A+f@ = A

b) A+B = B+A

c) A+(B+C) = (4+B)+C

d) An(B+C) = (ANB)+(4ANC)

e) A-BCA+B

f) A=Biff A+B =9

g) A+C = B+ C implies A = B.

1.34  Prove that {A} is a set without using the axiom of pairing,
given A is a set.



CHAPTER- 2

THE ORDERED PAIR AND THE CARTESIAN PRODUCT

2.0 Definition of Ordered Pair. (a, b) = {{al, {a, bl}. (NST p23)

Definition of Cartesian Product. Ax B = {x|x = (a, b) for some
ae¢A and some b ¢ Bl. (NST p24)

2.1 Construct these sets:
a) 2U 3 d 2x1 g 1x1
b) 2N 3 e) 1x2
c) 2x3 ' ox1

2.2 Show that {x, y} cannot serve as the definition for an ordered
pair; show that it does not have the property (x, y) = (a, b) iff -
x=a and y = b.

2.3 An ordered pair is by definition a set. Show by example that
not every ordered nair has two members.

24  Prove this proposition false: X x ¥ = '¥ x X_ for all sets
X, Y. The Cartesian product is not commutative.

25 Prove that the Cartesian product is nonassociative.

26  Give an example of two sets X, ¥ suchthat X x ¥ =
Y x X. '

2.7  Prove that the Cartesian product is distributive with respect
tounion: Xx(YUZ) = X xY)UXx2Z) forall X, Y, Z.

28  Give examples of sets such that X U(¥ x2Z) £ (XU Y) x
(Xxu2z)
9
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29  Prove that M (x, y) = x. ‘

210  Prove [NU(x, »] U [UW(x, ») -UN(x, 9] = y.
211 Provethat XxX = Y x Y implies X = Y.

212 Provethat Xx¥ = XxZ and X £ § imply ¥ = Z.



CHAPTER 3

RELATIONS

30 Definition of a Relation from X to Y. R is a relation from
X to Y iff RCXXY. One writes xRy if (x, y) ¢ R.

Definifion of the Image of a Relation. Image R = {y|(x, y) ¢ R
for some x ¢ X1

Definition of the preimage of a Relation. Preimage R = {x](x, »)
¢ R forsome y ¢ Y}. '

Definition. A relation R on X (from X to X)is

a) reflexive iff forall x ¢ X, (x,x) ¢ R

b) irmeflexive iff for all x ¢ X, (x, x) ¢ R

c) transitive iff (x, y) ¢ R and (y, 2) ¢ R imply
(x, 2) c-R-

d) atransitive iff (x, ;) ¢ R and (y, _;) ¢ R imply
(x,2) / R . '

e) symmetric iff (x, y) « R implies (y, x) ¢ R

f) antisymmetric iff (x, ) ¢ R and (y, x) € R imply
x = y. (NST p54)

Def'unhon of Composition. If R is a relation from X -to ¥ and
S is arelation from Y to Z then So R = {(x, 2)|(x, y) ¢
R and (y, z) ¢ S for some y ¢ ¥}. (NST p4l)

Defimt:ou of Inverse Relation. If R is a relation from X to ¥
then r} = {(y, )| (x, y) € R}. (NST p40)

1



