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Foreword

This is the sixtieth volume in the M.I.T. Research Monograph
Series published by the M.I.T. Press. The objective of this series is to
contribute to the professional literature a number of significant pieces
of research, larger in scope than journal articles but normally less
ambitious than finished books. We believe that such studies deserve a
wider circulation than can be accomplished by informal channels, and
we hope that this form of publication will make them readily accessible
to research organizations, libraries, and independent workers.

Howard W. Johnson



Preface

The demand on digital facilities such as communication systems and
data-storage systems is constantly increasing. In the past the pressures
have been relieved by upgrading their capacities; primarily through
the advances being made in digital hardware, attention has turned to
the problem of using these facilities more efficiently. Many of the efforts
are described in a general way as “data-compression,” “redundancy-
reduction,” and ““bandwidth-compression,”” and most of them rely on
the quantization and subsequent reconstruction of data.

This monograph presents the results of some research pertaining to
the distinct but related tasks of efficient estimation and control based
on quantized measurements. It has been published in the hope that
both researchers and engineers will find some useful ideas to expand
and adapt to their own needs. The reader is assumed to have a
familiarity with probability theory and random processes (at the level
of Lanning and Battin, Random Processes in Automatic Control, or
Papoulis, Probability, Random Variables, and Stochastic Processes),
and a basic understanding of estimation theory.

Discrete-time problems are considered and the emphasis is placed
on coarsely quantized measurements and on linear and, when pertinent,
time-varying systems. The heart of the material is a new interpretation
and outlook on the problem of generating nonlinear estimates from
quantized measurements. The development of the minimum variance,
or conditional mean estimate is quite fundamental, since it lays the
groundwork for other types of estimates. Approximate and more
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easily implemented nonlinear filters are examined in some detail,
especially in conjunction with three communication systems, so that
the subject matter is not limited to theory alone. The design of optimal
linear estimators is re-examined, and their performance is compared
with that of nonlinear filters. Not surprisingly, consideration of the
control of stochastic systems that have quantized measurements leads
to insights into, and control strategies for, systems with other types of
nonlinearities.

The major portion, but by no means all, of this research was sub-
mitted as a Ph.D. thesis to the Department of Aeronautics and Astro-
nautics at the Massachusetts Institute of Technology. This monograph
is an extensive revision of the original work, and it incorporates new
analytical and numerical results and the welcome comments of many
anonymous reviewers.

I wish to thank the members of my thesis committee, Professor
Wallace E. Vander Velde, chairman, Professor Arthur E. Bryson, Jr.,
and Professor James E. Potter for their pertinent questions and fruitful
suggestions. My association with them has been extremely valuable,
for not only are they outstanding teachers, but their approach to
technical problems is one that I particularly admire. Mr. Charles F.
Price acted as a sounding board for many ideas and provided comments
and suggestions about the initial draft; his help is greatly appreciated.
I should also like to acknowledge the profitable discussions with
Professor Terrence Fine, Dr. Herbert Gish and Dr. Donald Fraser.
Finally I would like to thank my wife, Susan, for typing the initial
draft and its revisions and for her patience and encouragement.

This research was supported by Grant NGR 22-009-010 from the
National Aeronautics and Space Administration, monitored by Mr.
Jules I. Kanter of NASA Headquarters, Washington, D.C., and was
carried out at the Measurement Systems Laboratory (formerly the
Experimental Astronomy Laboratory) at M.I.T.

R. E. Curry
Ithaca, New York
June, 1969
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1 Introduction

1.1 Background

The mathematical operation of quantization exists in many com-
munication and control systems. Quantizing elements may appear as
digital transducers, analog-to-digital converters, or digital-to-analog
converters; even the digital computer itself is a quantizing device,
because of its finite word length. Measurements will be quantized if
they are produced by digital sensors, transmitted over a digital com-
munication link, or processed by a digital computer.

Quantization of measurements is the irreversible process of rounding
arithmetical numbers, and information is lost by this operation. The
word quantizer is reminiscent of a nonlinear input-output staircase
graph. Although this is a valid representation in many instances, it is
overly restrictive, and we shall interpret the information in a quantizer’s
output in a different manner.

A quantizer is any zero-memory input-output device that designates the
interval or intervals in which its input lies.

This definition enlarges the class of nonlinear devices that may be
considered quantizers. For now we see that elements containing dead-
zone and saturation regions may be viewed as quantizers. Thus,
regardless of the input-output graph, a quantized measurement will
mean that the measured quantity lies in a known region.

The study of coarsely quantized measurements is important at this
time because in many cases it is less expensive to add equipment for a
more complicated processing of coarsely quantized data than to

1



2 INTRODUCTION

expend time, money, and effort on reducing the size of the quantum
intervals. This possibility is a direct result of the advances and im-
provements that are being made in digital hardware.

For instance, the ever-increasing demand to transmit and store
more information is being felt in almost all areas. The usual approach
has been to upgrade the transmission and storage capacity of a system,
but now it appears that further increases in performance will be
attained most economically by a more efficient use of existing digital
facilities (IEEE, 1967). This can be done by representing the same
amount of information with fewer bits, but more sophisticated data-
processing is required to recover the information.

For an example of this approach suppose that the word length in a
digital telemetry system could be shortened and that the data-
processing could be so employed as to keep the information loss at
an acceptable value. Then the designers of the system would have the
following tradeoffs, or a combination of them, at their disposal:

1. reduce the transmitter’s power, size, and weight and send the same

information in the same amount of time;

2. use the same transmitter to send the same information in a shorter
time; this would allow more instruments to be installed and
monitored.

Coarsely quantized measurements occur in other situations, as in
the taking of sonar bearings (Korsak, 1967) or during the alignment of
some inertial platforms. In the latter, as the platform approaches a
horizontal position, the horizontal component of the specific force
of the platform support becomes very small. Its detection by pulse-
rebalanced accelerometers, which provide quantized information
about velocity, is a lengthy, if not difficult, problem: the pulses occur
at a frequency that is proportional to the platform deviation (which is
small) and inversely proportional to the velocity increment of each
pulse (which may be large).

One solution is to change the velocity increment of each pulse, but
this may have an adverse effect on the accelerometer’s accuracy in
other modes of operation. An alternative approach during the align-
ment is to use the information that a pulse has not occurred to improve
the knowledge of the platform angle. This is equivalent to a quantized
measurement.

The example of platform alignment leads to the question of control
with quantized measurements. Control and estimation are inter-
related through their connection with the system as a whole, and the
measurement device (in this case a quantizer) may be expected to
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influence the choice of control laws that give satisfactory results. In
some cases, especially in those of optimal stochastic control, the inter-
dependence of estimation and control is so strong that the two functions
merge and must be designed as a single entity.

1.2 Objectives and Scope

The objective of this work is to examine the two distinct but related
problems of optimal estimation and control with arbitrarily quantized
measurements. Consideration is limited to discrete-time problems, and
emphasis is placed on coarsely quantized measurements and linear,
possibly time-varying, systems. A quadratic criterion is used in the
optimal control analyses.

1.3 Estimation with Quantized Measurements

Wiener (1966) was among the first to deal with the optimal estima-
tion of stochastic processes. He derived an integral equation for the
weighting function of the optimal, linear, realizable filter for minimizing
a mean-square-error criterion and solved the integral equation by
spectral factorization. Later attempts (see Davenport, 1958) were made
to remove such restrictions as the need for an infinite amount of data.
Both Kalman (1960) and Swerling (1959), using the state-space
approach, showed that the solution to the problem of optimal linear
estimation could be generated by difference equations (and, later,
differential equations, Kalman and Bucy, 1961). This formulation
allows for nonstationary processes and a finite amount of measure-
ment data and can be implemented in a straightforward manner with
digital and analog equipment.

The advances in the area of nonlinear filtering have not been as
spectacular, because the probability-density function of the state
cannot be represented by a finite set of parameters (as it can in the
case of Gaussian random variables). In continuous-time nonlinear
estimation (problems with a nonlinear system or measurement equa-
tion) the probability-density function of the state conditioned on the
available measurements must be found by solving a partial differential
equation (Bucy, 1965; Kushner, 1964; Wonham, 1964). Quadratures
are used to find the conditional mean and other moments.

No partial differential equation for problems in discrete-time non-
linear filtering exists, but the conditional probability-density function
of the state must be updated by Bayes’ rule and is usually a multi-
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dimensional integration (Ho and Lee, 1964). Some success has been
obtained by linearizing the equations and then applying the theory
of linear filters (Mowery, 1965). We note that this technique has little,
if any, value for quantized measurements, because the slope of the
nonlinearity is either zero or infinite.

With specific reference to quantized signals Bennett (1948) investi-
gated the spectrum of the quantizer output signal when the input
signal had a flat spectrum with sharp cutoff. Like Widrow (1960), he
assumed the quantum intervals to be uniform and of infinite extent.
Under these assumptions Widrow obtains interesting results by using
the Nyquist sampling theory on probability-density functions and
characteristic functions. Max (1960) investigated the optimal choice
of quantizer parameters (for example, width and placement of
quantum intervals), to minimize the mean square error between the
quantizer input and output. Ruchkin (1961), Steiglitz (1966), and
Kellog (1967) have all investigated the linear filtering of quantized
signals according to various criteria. Only Kellog has considered
coarse quantization.

To the best of the writer’s knowledge few attempts have been made
at nonlinear estimation with quantized measurements. Balakrishnan
(1962) derives some results concerning an adaptive, nonlinear pre-
dictor for quantized data. Meier and his associates (1967, a), taking
the Bayesian approach, use a uniform quantizer of infinite extent and
derive the equations for the conditional mean and conditional co-
variance for a scalar state variable and only one (scalar) quantized
measurement.

Estimation with quantized measurements is of prime interest to
designers of digital communication systems. Three systems that have
received particular attention in the past are the pulse code modulation
(PCM), predictive quantization, and predictive-comparison data-
compression. Studies of the quantization and reconstruction problem
(PCM) have been mentioned above in connection with Ruchkin
(1961), Steiglitz (1966), and Kellog (1967). Fine (1964) gives a theoretical
and general treatment of optimal digital systems with an example of
predictive quantization (feedback around a binary quantizer). Bello
and his associates (1967) have computed Fine’s nonlinear feedback
function by Monte Carlo techniques and give some simulation results.
Gish (1967), O’Neal (1966), and Irwin and O’Neal (1968) consider the
design of linear feedback functions for the predictive-quantization
system; predictive-comparison data-compression systems are in this
class. Davisson (1967) treats the optimal linear feedback operation
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and examines an adaptive system (1966). Other approaches to data-
compression have been described (IEEE, 1967 ; Davisson, 1968).

The topics on estimation with quantized measurements that are
covered in this monograph are briefly summarized as follows. Chapter 2
treats the nonlinear estimation of parameter and state vectors, based
on quantized measurements. The primary emphasis is placed on the
determination of the minimum variance (conditional mean) estimate.
Chapter 3 deals with the design of the three digital communication
systems mentioned above and presents results of Monte Carlo simula-
tion. Chapter 4 is devoted to optimal linear estimators for quantized,
stationary, random processes.

1.4 Optimal Control with Quantized Measurements

The efforts of previous investigators have been in the area of linear,
time-invariant, closed-loop systems that include a quantizer some-
where within the loop. Their work may be divided into two categories:
deterministic and stochastic.

Typical of deterministic approaches are those taken by Bertram
(1958) and by Johnson (1965), in which bounds for the system’s
behavior are found.

Stochastic approaches are taken by Widrow (1960), Kosyakin
(1966), Graham and McRuer (1961), Smith (1966), and Gelb and
Vander Velde (1968), in which the quantizer is approximated by a
gain element or a noise source or both. Generally speaking, the
quantum intervals are assumed to be small enough for simplifying
assumptions to be made about the quantization noise as, for example,
that it is white noise. System design and compensation are then
carried out by using the conventional linear-design tools.

The control of systems with quantized measurements may also be
pursued via the state-space techniques. A cost criterion is established,
and the control actions are chosen so as to minimize the expected
value of the cost. This is the problem of optimal stochastic control, or
combined estimation and control. The general statement of the problem
for nonlinear systems (including nonlinear measurements) and the
method of solution (dynamic programming) are outlined by Fel’dbaum
(1960), Dreyfus (1965, 1964) and Aoki (1967).

In only one case has the optimal stochastic control been shown to
be at all practical to use or even to find. If the dynamic system and
measurements are linear, the cost quadratic, the noises additive and
Gaussian, and the initial conditions of the state Gaussian, then, as
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has been shown by Joseph and Tou (1961), the optimal stochastic
control sequence does not have to be determined by dynamic pro-
gramming but may be found much more easily with the aid of the
separation theorem. The separation theorem states that the com-
putation of the optimal stochastic contro! may be carried out in two
parts: first with a Kalman filter for generating the conditional mean
of the state and next with the optimal (linear) controller that is derived
if all disturbances are neglected.

The topics on optimal stochastic control are as follows. Chapter 5
contains the statement of the problem and presents results for the
optimal control of a two-stage process with quantized measurements;
it also gives the derivation of a separation theorem for nonlinear
measurements. Chapter 6 considers suboptimal stochastic control
algorithms and offers a new algorithm, which is widely applicable and
compares favorably with other methods in simulations;; it also discusses
the design of optimal linear controllers (including linear feedback for
the predictive-quantization systems). Chapter 7 summarizes the results
and conclusions and suggests topics for further research.

1.5 Notation

The notation follows general practice: lower case and upper case
bold face letters denote vectors and matrices, respectively, e.g. @ and A.
E is the expectation operator. Subscripts refer to the time index
(x, = x(t,)), and superscripts refer to elements within an array
(x = {x}). In places where confusion might arise, the dummy argu-
ments of probability density functions are explicitly shown with a
mnemonic correlation between the dummy arguments and the random
variables. For example, p. ,.(& 5, () is the joint probability density
function of the random vectors x, y, and z; the dummy arguments
&, i, and ¢ refer to x, y, and z, respectively. When the context is clear,
p(x, y,z) is used to represent the joint probability density function.



2 Nonlinear Estimation with
Quantized Measurements

2.1 Introduction

This chapter contains some results in the nonlinear estimation of
parameter and state vectors when the measurements are quantized.
Many different criteria may be used to derive estimates of random
variables (see, for example, Lee, 1964, Chapter 3), the techniques vary
according to the amount of probabilistic structure assumed a priori
and the amount of computation that can be performed. The next
section of this chapter introduces the concept of maximum-likelihood
estimation with quantized measurements. The remainder of the
chapter is devoted to Bayesian estimates with emphasis on the
minimum variance, or conditional mean, estimate. Estimates of
parameters are considered first and lead to apparently new formulas
for the conditional mean and covariance of random variables whose
a priori distribution is normal. These results are extended to Gaussian,
linear systems, and the Kalman filter piays a surprising role in the
determination of the conditional mean. The last section describes
several nonlinear approximations for calculating the conditional mean
of both parameter vectors and state vectors.

2.2 Maximum-Likelihood Estimates of Parameters

In this section we derive the necessary conditions for the maximum-
likelihood estimate of parameters when the observations have been
quantized. This method of estimation can be used when no probabilistic
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