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Introduction

This book is the result of lecture courses on algebraic topology given by
the author at the University of Manchester in 1967-1970, at Cornell
University in 1970-1971 and at the Georg August University, Gottingen,
in 1971-1972. The level of the material is more advanced than that of a
first-year graduate course in algebraic topology; it is assumed that the
student has already had a course on basic algebraic topology which
included singular homology, the fundamental group and covering spaces.
Moreover, a student who has never encountered differentiable manifolds
will probably have difficulty with Chapter 12. On the other hand no
knowledge of homotopy theory beyond the fundamental group is assumed.

The last few years have seen the publication of several excellent text-
books on basic algebraic topology, most notably the book by Spanier [80],
which I suggest as a companion volume to this one. There is a certain over-
lap between Spanier’s book and this text—particularly in Chapters 0-6,
14 and 15—but the present book goes considerably further and has as its
goal that the reader should be brought to a point from which he could
begin research in certain areas of algebraic topology: stable homotopy
theory, K-theory, cobordism theories.

Despite the title ““Algebraic Topology” this book does not (and could
not) pretend to achieve the same very advanced level in all areas of this
subject. The choice of topics to be emphasized is, of course, heavily
influenced by the research interests of the author. Thus, for example,
unstable homotopy theory is only developed to the point at which it really
begins to be interesting and is then dropped in favor of stable homotopy
theory. The reader who finds that his appetite for unstable homotopy
theory has been whetted is advised to follow the signposts set up by
Adams in [10]. Another important branch of algebraic topology which is
omitted is obstruction theory—partly due to lack of space, partly because
one could scarcely give a better introduction than Thomas’ Seminar on
fibre spaces [86].

The following basic idea occurs repeatedly as a leitmotiv in this text:
the majority of the problems which have been solved by means of algebraic
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topolggy have first becn redoced to the question of the cxistence or von-
existence of ¢ continvous luucugnf' X — Y beiween two given topological
spaces X, Y. One trigs (o prove the non-exis 2, for example, by finding
aa appropeiats functor Ffrem the extegnry :,.;".;n logical spaces to some
sigebraic category—that is for every spa o Y e ars given F(X), a group,
ring, mocule, ..., and for every contizuous fu: 'ct'ouf X — Y we have
F(}y:F(X)— I'( Y) a ?-omonmx; 1 proserving the given algzebraic
structure. Then one ceeks 1o demonstiare that the Slg&bfﬁlu map
F(f):F(Y) - F(Y) cannot pessibly cxist. (Proofs of existence are in
general more difficult to handle). From this point of view the richer the
natural algebraic stiucture on F(X) the better: if F(X), F(Y) have a very
»:o'npwx :dgebraic structure, then there will net be many homemoiphisms
S FX) - T‘( Y) preserving this structure, and thus the chances of showing

*{f) cennot cxist are good. At several points, then, (cf. Chapters 2, 13,
i7, 18) we shell strive to cnrich the natural algebraic structure available
on our funciors. In C*x::v;h.r 19 we make the happy discovery that we have
a sufficiently comjlex notural algebied cture on F(Y) that we can
(under favorable circumciances) cay preciscly which algebiaie rizps
P F(X) — F(Y) are of the o ¢ = F(f) for some continucus function
S V. At this point existence proofs become possible.

Chapters 0 and I contain respectively certain results from set-theoretic
topology which are repeatedly used it the text and the basic definitions of
category theory; both chapters should be in the nature of a review {or.the
reader. Chapter 2 takes up the sets [X, Y] of homotepy classes of maps
J:X — Y and deals with such questions as: under what conditions on X or
7 is [X, Y] a group, when is & sequence

[X, W] <o [Y, W] «>— [Z, W]

exact, etc. (enrichment of structure!). In Chapter 3 we then specialize to
X = 8" and consider 1,(Y, ) = [S", So; Y, Vo), which is always a group
of n > i—the nth homotopy group of Y. The more elementary properties
of these groups are demonstrated in this chapter. In Chapter 4 we define
the notions of fibration and weak fibration and show that for a weak
fibration p: E — B with fibre F = p~!(b,) there is an exact sequence

1 V4
o ——s mo(F,ep) —ts To(E, e6) ———> To(B, bg) ——>
~i(F,eg) —— -

We define the gecmetrically very important notion of a fibre bundle and
show that every fibre bundle is a weak fibration. There follow some

important examples of fibre bundles:
O(n) > O(n)/O(n — k), O(n)/O(n— k) —> O(n)]O(n — k) x O(k)
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anc others. The chapter is concluded by remarking that a covering
o:X'" - X is a fibre bundle with discrete fibre and by using this remark to
compute the homotopy groups of S'and 7" = 8! x §' x -+ x 5°,

Proofs of deeper results for arbitrary topological spaces X, Y are
difficult; it is not easy to demonsizate, for example, the existence of con-
dinuous functions 2 i - Y. We turn therefore to the smaller category of
CW-complexes. Since CW-complexes are built up by giueing cells D
together, it is possible to construct maps and homotopies cell by cell.
This property permits strong statements about [X,Y] when X or Yisa
CW-complex. In Chapier 5 we define CW-complexes and prove some
straightforward properties. Chapter 6 contains some deeper homotopy
results, such as: x,{4, x,) depends only on the cells of dimension at most
i+ |; the suspension homomorphism:

EirgX %oy = Ta(SX, % (] > [1aS])

is an isomorphism for ¢ < 2n + 1 if X is an n-connected CW-complex:
2 map f:X—Y between CW-complexes induces an isomorphism
Fe il X, %0) — (Y. yo), ¢ 2 0, if and only if fis a homotopy equivalence.

At this point we turn from homotopy theory to homology and co-
homology theories. A generalized homology theory is a family of functors
{h, ne€ Z} from the category of topological spaces to the category of
abelian groups whick: satisfies the first six of the seven Eilenberg-Steenrod
axioms (i.c. the “Dimension Axiom” is not necessarily satisfied). Chapter 7
is an investigation of the properties of such theories which follow directly
from the axioms; this amounts to carrying out such parts of the program
of Eilenberg and Steenrod [40] as still go through without the seventh
axiom.

Chapter § contains a construction of Boardman'’s stable category of
spectra and demonstrations of some of its most important properties—in
particularthatX: [E,F] — [EA S, FA S'] s a bijection for all spectra E, F.
We show how to construct a homology theory E, and a cohomology theory
E* for every spectrum E. Then in Chapter 9 we prove that we have already
constructed all possible cohomology theories in Chapter 8 (Brown’s
representation theorem). Then come the three most important known
examples of homology and cohomology theories: ordinary homology
(Ch. 10), K-theory (Ch. 11) and bordism (Ch. 12). In Chapter 10 we also
show how to compute the singular homology groups of an arbitrary CW-
complex and prove the Hurewicz isomorphism theorem. Chapter 11
contains the computation of the homotopy groups of the stable groups
0, U, Sp.

Next comes a chapter on products in homology and cohomology.
Chapter 13 begins with the universal coefficient theorems (how does one
express H,(X;G) and H*(X;G) in terms of H,(X;Z) and G?) and the
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Kiinneth theorem (how does one express H,(X x Y) in terms of H,(X),
H,(Y)?). Next the x-, U- and N-products for singular homology and
cohomology are briefly discussed. Then we make a digression in order to
construct the smash product of two spectra, whereupon we can describe
products in the generalized homology and cohomology theories E,, E*
associated to a ring spectrum E, We describe explicitly the products for
ordinary homology, K-theory and bordism.

Chapter .14 then applies what we have learned about products to
investigations of duality (Alexander, Lefschetz, Poincaré for manifolds;
Spanier-Whitehead for finite spectra) and to questions of orientability
of manifolds with respect to generalized cohomology theories. Spanier-
Whitehead duality also permits a proof of a representation theorem for
homology theories similar to the one for cohomology theories in Chapter 9.

In Chapter 15 the level of difficulty increases with the introduction of
spectral sequences. Everyone finds spectral sequences baffling at the
first encounter. Experience, however, shows that spectral sequences are
among the topologist’s most effective tools, so that the effort required to
master their use is well worth while. We develop the Atiyah-Hirzebruch—
Whitehead and Leray-Serre spectral sequences and make some important
applications' of them: Gysin, Wang and Serre exact sequences, Leray-
Hirsch theorem, Thom isomorphism theorem.

Chapter 16 is concerned with the calculation of the homology and
cohomology rings E,(BG), E*(BG) of the stable classifying spaces BG,
G=0, U and Sp. Here the Atiyah-Hirzebruch-Whitehead spectral
sequence proves very useful. In the process we construct certain classes
¢; € E*(BG) with whose help we can form invariants ¢,(¢) € E*(X) of
isomorphism classes of G-vector bundles £ — X—the so-called character-
istic classes. The chapter ends with a proof of the Bott periodicity theorem
BU ~ Q}BU.

Chapter 17 represents a large step in our natural-algebraic-structure-
enrichment program: we show how to make £*(X) into a module over an
algebra A*(E) = E*(E) and E,(X) into a comodule over a Hopf algebra
A,(F) = E,(F) in a natural way (under favorable conditions on E). We
compute the Hopf algebras 4,(E) for E= MU, MSp, K and KO and find
they have satisfyingly complex algebraic structures (recall our leitmotiv).
As an application we find bounds on the image of the Hurewicz homo-
morphisms

hg 1w (MU) — K,(MU)
hko T, (MSp) — KO, (MSp)
for small values of g.
Cuapter 18 contains a determination of the algebras A*(H(Z,)) and
. A,(H(Z,)) including the construction of certain elements Sq' € A*(H(Z,)).
The analogous results for 4,(H(Z,)), A*(H(Z,)) are stated without proof.
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In Chapter 19 we enjoy the triumph of our natural-algebraic-structure-
enrichment program: using the comodule structure of E,(X) over Ey(E)
constructed in Chapter {7 we can build a spectral sequence (the Adams
spectral sequence) {Es',d,} whose E,-term is the purely algebraic construct

Extie (Ey(S°), Ex(X))

(Ext%*(—,-) is a functor derived from Homg(-,-), C a coalgebra, and thus
has to do with algebraic maps) and which converges (for connected E) to
n$(X)/ Dy, the stable homotopy of X modulo a certain subgroup D,
which depends on E. For E= MU or MSp we show that D, =0; for
E=H(Z,) D, is the subgroup of elements of finite order prime to p.
Thus in cases where the spectral sequence proves manageable one can
start from a knowledge of E,(X) as E,(F)-comodule and compute
n3(X)/Dy. We show how the Adams spectral sequence has permitted the
determination of n3(S°) for small g. We then turn to a consideration of the
spectral sequence for E = K, KO. Here E is not connected, so the spectral
sequence may not converge, but it still provides homomorphisms

ec:kerky — Bxtg®d (Ry(S°), Ky(X)
ex:kerhgo — Ext}8tlco, (KO4(S0), KO4(X)).

*

The Ext-groups for X = S° are computed and the result is used to localize
a non-trivial direct summand in ©§(S®) whose order is related to the
Bernoulli numbers.

Chapter 20 then represents an extended application of the Adams
spectral sequence. The cases £= H(Z,) and X = MG, G=0, SO, or U
are, fortunately, of the sort in which the Adams spectral sequence is
manageable and permits a complete determination of 1,(X) = 1, (MG) ~
Q$, the G-cobordism ring. We also prove the theorem of Hattori and
Stong, which describes the image of

he: T (MU) — K, (MU).

After reading Chapter 20 the student should be able to understand without
undue difficulty the papers [13, 14] of Anderson, Brown and Peterson in
which Q3Y and Q37" are determined.

This summary undoubtedly makes clear that the level of mathematical
expertise demanded of the reader rises rather markedly from Chapter 2,
say, to Chapter 20. The student who begins with the minimal prerequisites
described in the first paragraph will not acquire the facility needed for
understanding the later chapters merely by reading straight through. He
must try to master the material in each chapter to such an extent that he
can apply it to the solution of problems other than those worked out in
the text. In some cases he will find it valuable to seek further applications
in the books and articles listed at the end of each chapter.
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The bibliography included here does not attempt to be comprehensive.
Steenrod’s valuable compendium of all mathematical reviews having to
do with topology makes such a comprehensive bibliography unnecessary.
Instead this bibliography has two goals: (1) to suggest to the student
where he might begin to pursue a given topic further and (2) to acknow-
ledge the sources from which much of the material in this text is drawn.

In addition, however, I wish to acknowledge quite explicitly and with
gratitude my debt to Frank Adams. It is no exaggeration to say that most
of what I know about algebraic topology I learned from him. Anyone
familiar with his work will recognize the influence of his way of looking
at algebraic topology on the presentation of the subject given here.
Moreover, on certain topics (e.g. Chapter 8, Chapter 9 in the case of
finite CW-complexes, the construction of E A F) I have largely reproduced
his presentation of the topic with only small alterations (which may not
have been for the better).

I further wish to express my deep gratitude to Egbert Brieskorn for his
encouragement and helpful suggestions. My thanks also go to Fraulein
Ingrid Sochaczewsky and Frau Christiane Preywisch for help in typing the
manuscript.

The manuscript of this book was submitted to the Georg August
University, Gottingen, in January 1973 as Habilitationsschrift.

Gottingen, November, 1973 ~ ROBERT M. SWITZER
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Chapter 0

Some Facts from General Topology

It is assumed that the reader is familiar with the elements of general
topology—e.g. the most important properties of continuous functions,
compact sets, connected sets, etc. Nevertheless, certain general topological
results which will be used repeatedly in this book are assembled here for
the reader’s convenience.

0.1. Let X be a topological space and 4,, 4,, ..., A, be closed subspaces
such that X =, 4,.

Suppose f;:4,— Y is a function, 1 <i<n; there is a function
[ XY such that f|4,=f;, 1<i<n, if and only if fi|4,N A4;=
filAin A, 1 <i<n, 1<j<n In this case f is continuous if and only if
each f; is.

We shall often set about defining a continuous function f: X — Y by
cutting up X into closed subsets 4; and defining fon each A, separately in
such a way that f| 4, is obviously continuous; we then have only to check
that the different definitions agree on the “overlaps” 4,N A4,.

0.2. The universal property of the cartesian product: let py: X x ¥ — X,
Py:X x Y — Y be the projections onto the first and second factors respec-
tively. Given any pair of functions f:Z — X and g:Z — Y there is a
unique function h:Z — X x Y such that pyoh=f, pyoh=g. h is
continuous if and only if both f and g are. This property characterizes
X x Y up to homeomorphism. The unique 4 will often be denoted by (£, g).

In particular, to check that a given function A:Z — X x Y i3 continu-
ous it will suffice to check that py o h and py o h are continuous.

0.3. The universal property of the quotient: let a be an equivalence relation
on a topological space X, let X/a denote the space of equivalence classes
and p,: X — X/a the natural projection. Given a function f: X — Y, there
is a function f':X/a — Y with f’' o p,=f if and only if xax’ implies
f(x) =f(x'). In this case 1’ is continuous if and only if fis. This property
characterizes X/ up to homeomorphism.

An important example of a quotient which we frequently encounter
is that of a space X with a closed subspace A4 collapsed to a point. Explicitly,
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if A = X is a closed non-empty subspace, we take the relation
a=Ax AU {(x,x):xe X} Xx X

and let X/4 = X/a. For A= @ we adopt the convention that X/A =
X|/@ = X* = XU {a disjoint point}. This convention will be seen to be
justified by the fact that every theorem we state about X/4 will hold
equally well for X/ &.

0.4. Product and quotient combined: if a is an equivalence relation on a
topological space X and f is an equivalence relation on Y, then there is an
obvious equivalence relation « x fon X x Y:

() axf(x,y) = xax’ and yBy.
There is a unique continuous function

Y
6: XY (xa) x (¥/B),
ax f

such that ¢ o p,,s = p. % ps and which is even bijective—but not necess-
arily a homeomorphism. One important case in which ¢ is a homeo-
morphism is that where fis the identity relation 1 and Y is locally compact.

Proof: We must prove that if T < iz { is open then ¢(7") is open in

(X/a) x Y. T open means 7' =p;)(7T) is open in X x Y. Suppose
(x0,¥0) € ¢(T) and choose x, € X with p,(x{) = xo. By the definitions of ¢
and T, we have (x{,y,) € 7'; and since 7" is open, there exist neighbor-
hoods U of x5 and K of y, in X, Y respectively such that U x K < T'. We
may assume K is compact.

LetJ' = {x" € X:x' x K< T'}. We first show that J' is open. For every
‘x' € J' we can, because K is compact, find an open neighborhood U, of x’
such that U, x K = 7", which proves J' is open. If J = {x e X/a:x x
K < ¢(T)}, then clearly pz'(J) = 7', so J is open in X/a. Also (xq, o) € J %
K< ¢(T), so ¢(T) is open. ]

Example. The unit interval / = [0, 1] is compact, so »i‘—:—]] > (X/a) x 1.

0.5. A homotopy from X to Y is a continuous function F: X x 71— Y.
For each 7 € 1 one has F,: X — Y defined by F,{x) = F(x,1) for all xe X.
The functions F, are called the “stages’ of the homotopy. If fig: X — ¥
are two maps, we say f'is homotopic 10 g (and write f ~ g) if there is & horno-
topy F: X x I — Y such that Fy =7 and F, =g. In other words, fcan be
continuously deformed into g through the stages F,. I{f 4 < X is a sub-
space, then Fis a homotopy relative to A if F(a,t) = F(a,0),allae 4, 1€ 1.
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0.6, The relation ~ is an equivalence relation.

Proof: f ~ fis obvious; take F(x,1) = f(x),allxe X,te . If f~gand Fisa
homotopy from fto g, then G: X x I — Y defined by G(x,1) = F(x,1 — t),
x €X, te I,is ahomotopy from g to /—i.e. g ~ f. If f ~ g with homotopy F
and g ~ h with homotopy G, then /'~ h with homctopy H defined by

F(x,21) 0<r<1)2
G(x,2t—1) 12<t<1.

H(x,1)=

Note that here we use 0.1 to show H is continuous. {]

0.7. Thus the set of all continuous functions f: X — Y is partitioned into
equivalence classes under the relation ~. The equivalence classes are called
homotopy classes, and the set of all homotopy classes is denoted by [ X; Y].
If f: X — Y, then the homotopy class of f'is denoted by [f].

As an application of 0.4 we get the following proposition.

0.8. Proposition. I/« is an equivalence relation on a topological space X and
F:X x I — Y is a homotopy such that each stage F, factors through X[a—
ie. xax" = F(x)= F/(x")—then F induces a homotopy F':(X|a)xI—Y
such that F' o (p, x 1) = F.

Proof: The hypothesis on £ is precisely that F factors through

X x I—i.e.
ax 1

. . . Xx1
there exists a continuous function F”:a—— — Ysuch that F" o p,, , = F.

x 1
X x I
ax 1
(X/a) x 1> Yis the required homotopy. []
Example. If 4 is a closed subspace of X and F: X x /-> Yis a homotopy
such that F(a,?) = F(a',1) foralla,a’ € 4, 1 € I, then Finduces a homotopy
F' ' (X[A)xI—Y.
0.9. Function spaces: if X and Y are topological spaces, we let YX denote
the set of all continuous functions f: X — Y. We give this set a topology,
called the compact-open topology, by taking as a subbase for the topology
ail sets of the form Ny ¢ = {f1f(K) < U}, K < X compact, U < Y open.
0.10. The evaluation function €: ¥X x X -—» Y defined by e(f,x) = f(x) is
continuous if X is jocally compact. In all the cases we shall consider X wili
be /= [0,1].

By 04 ¢:

— (X/a) x 1 is a homeomorphism. Then F'= F" o ¢~":

U.1Y. The exponential law: it X, Z are Hausdorff spaces and Z is locally
compact, then the natural function

[‘ szx ay (YZ)X
defined by (E£/(x))(z) = f(z, x) is a homeomorphism.
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0.12. Base points: in what follows we shall often have to consider not just a
topological space X but rather a space X together with a distinguished
point x, € X called the base point. The pair (X, x,) is called a pointed space
(one also speaks of pointed sets). When we are concerned with pointed
spaces (X, xo), (Y, o), etc. we always require that all functions f: X — Y
shall preserve base points—i.e. f(x,) =y,—and that all homotopies
F: X x I — Y be relative to the base point—i.e. F(x,,?) = y,, all 1€ I—
unless an explicit disclaimer to the contrary is made. We shall use the
notation [X,x,; Y,y,] to denote the homotopy classes of base point-
preserving functions—where homotopies are rel x,, of course. [ X, xo; Y, ¥o]
is a pointed set with base point f,, the constant function: fy(x) = y,, all
x e X. .

Let us use the notation (Y, B)*:4 to denote the subspace of Y* con-
sisting of those functions such that f(4) < B, where A < X, B< Y are
subspaces. There are obvious generalizations of this notation, such as
(Y,B,B’')*:4:47 etc. In particular, if (X, x,), (Y,),) are pointed spaces,
then we have the space (Y,y,)*'*® of base point-preserving functions.
It has as base point f,, where f5(x) = y,, all x.

If (X,x,), (Y,0) and (Z, z,) are three pointed spaces, we can form

(Y, y0) &%, fo)X-x0  f(z)=1y,, allzeZ,

which is a subspace of (¥?)X. Thus we may ask what subspace of YZ*¥
corresponds to it under the exponential function of 0.11. One readily sees
that the answer is

(Y,yo)(ZxX. Zx{xy) U (2o} xX)

We use the notation Z v X for the subspace Z x {xo} U {zo} x X of Z x X.
It can be thought of as the result of taking the disjoint union ZU X and
identifying z, with x,. Zv X is again a pointed space with base point
(2o, xo)- Then we have

0.13. Proposition. The exponential function E:Y*** — (Y*)* induces a
continuous function

E:( Y’ yo)(lxx. Zvx)y _, (( Y, yo)(l,z,), ﬁ))(x, Xo)

which is a homeomorphism if Z and X are Hausdorff and Z is locally
compact.

Remark. The subspace Z x {xo} U {zo} x X ©Z x X is called the wedge
sum of Z and X and is characterized by the property that for any continuous
functions f:(Z,z,) — (W, w,), g:(X,x,) = (W, w,) there is a unique con-
tinuous function A:(Zv X,*) — (W,w,) such that h|Z=f, h|X=g.
(Compare this with 0.2.) The unique function A will be denoted by
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(Zv X,*) (—!"—)>(W, wo). Of course, given continuous functions f: (X, x,) —
(X', x5)and g:(Y,y,) — (Y',y5) thereis a continuous functionfvg:(Xv ¥,
(x0,¥0)) = (X'v Y', (x4,y5)) which is fon X, g on Y. We use * o denote
the base point (x,¥0) € XV Y.

Exercise. Use 0.11 to give an independent proof of 0.4 in the case where
X and Y are Hausdorff.



Chapter 1

Categories, Functors and Natural Transformations

In modern mathematics whenever one defines a new class of mathematical
objects one proceeds almost in the next breath to say what kinds of func-
tions between objects will be considered; thus, for-example, topological
spaces and continuous functions, groups and homomorphisms, rings and
ring homomorphisms. If we formalize this observaticn, we are led to the
notion of a category.

1.1. Definition. A category is

a) a class of objects (e.g. spaces, groups, etc.);

b) for every ordered pair (X, Y) of objects a set hom (X, Y) of morphisms

with domain X and range Y; for f€ hom(X,Y) we write /1 X —Y or

Xy

c) for every ordered triple (X, ¥,Z) a function hom(Y,Z) x hom(X, Y) —

hom(X.Z) called composition. If f€ hom(X, Y) and g € hom(Y,Z) then

the image of (g,f) in hom (X, Z) will be denoted by g o .

These objects and morphisms are required to satisfy two axioms:

Cl) If fe hom(JX, )), g e hom(Y,Z), he hom(Z, W), then ho(gof)=
(kog)ofinhom(X, W).

C2) For every object Y there isa 1y € hom(Y, Y)such that 1, o g = g for
every g ehom(X,Y) and holy, =h for every he hom(Y,Z), all
X.Z

One can show that 1, is unique.

1.2. Definition. Two objects X, Y are called equivalent if there are morph-
ismsfe hom(X, Y)and g € hom(Y, X)suchthatgof=1yandfog=1,.
fand g are callec equivalences.
1.3. Examples. i) The category ¢ of all sets and all functions.

it) The category 7 of all topological spaces and all continuous

functions.
i) The category 2% of pointed sets and functions preserving base

point.
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iv) The category 27 of pointed topological spaces and continuous
functions preserving base point.

v) The category ¢ of groups and homomorphisms.

vi) The category & of abelian groups and homomorphisms.

vii) The category .#; of left R-modules (R some fixed ring) and
R-homomorphisms.

viii) The category ' in which the objects are topological spaces but
hom(X,Y)=[X, Y] Given [f] € hom(X, Y), [g] € hom(Y,Z), we define
[g] o [f] to be [g of]. One readily checks that [g] o [f] is well defined
and that Cl), C2) are satisfied. In like fashion we have 27",

Note that X and Y are equivalent in  if and only if they are homeo-
morphic, whereas in 7' they are equivalent if and only if they are homotopy
equivalent.

In algebraic topology one attempts to assign to every topological
space X some algebraic object F(X) in such a way that to every continuous
function f: X — Y there is assigned a homomorphism F(f): F(X) — F(Y).
One advantage of this procedure is, for example, that if one is trying to
prove the non-existence of a continuous function f: X — Y with certain
properties, one may find it relatively easy to prove the non-existence of the
corresponding algebraic function F(f) and hence deduce that f could
not exist. In other words, F'is to be a ‘““homomorphism’ from one category
(e.g. 7) to another (e.g. ¢4 or ). If we formalize this notion, we are led
to define a functor.

1.4. Definition. A functor from a category ¥ to a category 2 is a function
which

a) to each object X € € assigns an object F(X) € 2;
b) to each f € homg (X, Y) assigns a morphism

F(f) € homg (F(X), F¢&)).
F is required to satisfy the two axioms:
F1) For each object X € € we have F(1x) = I,
F2) For fe homg(X, Y), g € homg(Y,Z) we have
F(g of) = F(g) o F(f) € homg (F(X), F(Z)).

Inthearrow notation we have thatif /: X — Ythen F(f): F(X) — F(Y).
We also have the notion of cofunctor; cofunctors ‘‘reverse the arrow””.

1.5. Definition. A cofunctor F* from the category € to the category 2 is
a function which

a) to each object X € € assigns an object F*(X) e 9,
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b) to each fe homg(X, Y) assigns a morphism

F*(f) € homg (F*(Y), F¥(X))
satisfying the two axioms:

CF1) For each object X € ¥ we have F*(1y) = lrex,.
CF2) For each fe homg (X, Y) and g € homg(Y,Z) we have

F*(gof)=F*(f)o F*(g) € homg (FX(Z), F*(X)).

Remark. In the literature functors are often referred to as covariant
functors and cofunctors as contravariant functors.

1.6. Examples. i) Define F:9 — & as follows: if X € 7, let F(X) be the
underlying set (forget the topology), and if /X — Y is a continuous
function, let F(f) be the underlying function (forget continuity). For
obvious reasons F is called a “forgetful functor’. One can think of many
examples of forgetful functors.

ii) Given a fixed ring R and fixed (left) R-module X, we can define a
functor Fy: My — o ; we take Fy(M) = Homg(K,M), M € # g, and for
any homomorphism ¢: M — M’, we take

Fx(¢) = Homg(1x, ¢): Homg (K, M) — Homg (K, M").
Similarly we get a cofunctor F¢*: A — o by taking
Fg(M)=Homg(M,K), Fg(¢)=Homg(e,l1g).

ii) In a similar vein, given a fixed pointed space (K.k,) € T, we
define a functor

Fy: 2T -2

as follows: for each (X,x,) e 27 we take Fg(X,x,)=[K,ko; X,Xo).
Given f:(X, xo) —(Y,)o) in hom((X, xo), (Y, o)) we define Fg(f) by

Fx(Nlgl=[foglelK ko; Y, ol

for every [g] € [K,ko; X, Xo)-
Similarly we obtain a cofunctor F¢ by taking F*(X, xo) = [ X, xo; K, ko)
and fOff:(X,Xo) _’( Y!y()) in hom((vaO)’ (Y,,Vo))

Fx(N)gl = [g o f] € [X, xo0; K, ko]
for every [g]l € [Y,yo; K, ko).

Observe that f~ f' rel x, implies Fy(f) = F(f') and likewise FF(f) =
FX(f"). Therefore Fx and F can equally well be regarded as defining a
functor 27 ' — P&, respectively a cofunctor.

iv) Define a functor C: 7 — J by taking C(X)= X = one point
compactification of X for every X € 7. If f: X — Y is a continuous func-



